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The Hopf fibration, named after Heinz Hopf who studied it in a 1 93 1  paper [9] , is an 
important object in mathematics and physics .  It was a landmark discovery in topology 
and is a fundamental object in the theory of Lie groups .  The Hopf fibration has a 
wide variety of physical applications including magnetic monopoles [14] , rigid body 
mechanics [11] ,  and quantum information theory [13] . 

Unfortunately, the Hopf fibration is little known in the undergraduate curriculum, 
in part because presentations usually assume background in abstract algebra or mani
folds . However, this is not a necessary restriction. We present in this article an intro
duction to the Hopf fibration that requires only linear algebra and analytic geometry. 
In particular, no vector calculus, abstract algebra, or topology is needed. Our approach 
uses the algebra of quatemions and illustrates some of the algebraic and geometric 
properties of the Hopf fibration. We explain the intimate connection of the Hopf fibra
tion with rotations of 3-space that is the basis for its natural applications to physics. 

We deliberately leave some of the development as exercises, called "Investigations," 
for the reader. The Investigations contain key ideas and are meant to be fun to think 
about. The reader may also take them as statements of facts that we wish to assume 
without interrupting the narrative. 

Hopf's mapping 

The standard unit n-sphere Sn is the set of points (Xo, Xi, . . .  , Xn ) in JRn+l that satisfy 
the equation 

x5 + x� + ... + x; = 1 .  

Geometrically, sn is the set of points in JRn+l whose distance from the origin is 1 .  
Thus the 1 -sphere S 1 is the familiar unit circle in the plane, and the 2-sphere S2 is 
the surface of the solid unit ball in 3-space. The thoughtful reader may wonder what 
higher dimensional spheres look like. We address this issue at the end of this article, 
where we explain how stereo graphic projection is used to "see" S3 0 

The Hopf fibration is the mapping h: S3 --+ S2 defined by 

h (a ,  b, c, d) = (a2 + b2 - c2 - d2 , 2 (ad + be), 2 (bd - ac) ) .  ( 1 )  

To be historically precise, Hopf's original formula differs from that given here b y  a 
reordering of coordinates . We use this altered version to be consistent with the quater
nion approach explained later in this article. It is easy to check that the squares of the 
three coordinates on the right-hand side sum to (a2 + b2 + c2 + d2) 2 = 1 ,  so that the 
image of h is indeed contained in S2 0 

What problem was Hopf trying to solve when he invented this map? And how can 
one see any connection with physical rotations, as we have claimed? 
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Hopf's paper [9] represented an early achievement in the modern subject of ho
motopy theory. In loose terms, homotopy theory seeks to determine those properties 
of a space that are not altered by continuous deformations. One way to discover the 
properties of an unfamiliar space X is to compare X with a familiar one Y via the 
set of all continuous maps Y -+ X.  Two maps whose images can be continuously de
formed from one to the other are called homo topically equivalent. Knowing something 
about Y and also about the set of homotopically equivalent maps from Y to X helps 
us understand X. This seemingly indirect method provides a powerful way to analyze 
spaces. 

Ironically, one of the most intractable problems in homotopy theory is to determine 
the homotopy equivalence classes of maps Y -+ X when X and Y are both spheres 
and the dimension of X is smaller than the dimension of Y. Many individual cases for 
particular pairs of dimensions of X and Y are understood, but there remain interesting 
unsolved problems. Hopf's map h: S3 -+ S2 was a spectacular breakthrough in this 
area. We cannot give the full story of this discovery here, but we can explain the Hopf 
fibration in a geometric way that indicates its connection to rotations . 

Rotations and quaternions 

First, notice that a rotation about the origin in JR3 can be specified by giving a vector for 
the axis of rotation and an angle of rotation about that axis . We make the convention 
that the rotation will be counterclockwise for positive angles, when viewed from the 
tip of the vector (as in FIGURE 1 ) ,  and clockwise for negative angles. 

Figure 1 A rotation i n  �3 i s  specified by an angle(} and a vector v giv ing the ax i s  

The specification of  a rotation by an  axis vector and an angle is far from unique. 
The rotation determined by the vector v and the angle e is the same as the rotation 
determined by the pair (kv, e + 2mr), where k is any positive scalar and n is any 
integer. The pair ( -v, -e) also determines the same rotation. Nonetheless ,  we see that 
four real numbers are sufficient to specify a rotation: three coordinates for a vector and 
one real number to give the angle. This is far fewer than the nine entries of a 3 x 3 
orthogonal matrix we learn to use in linear algebra. In fact, we can cut the number 
of parameters needed to specify a rotation from four to three, for example, by giving 
an axis vector whose length determines the angle of rotation. However, we shall not 
pursue that here; it is the 4-tuple approach that turns out to be practical. Is there an 
efficient way to work with 4-tuples of real numbers to do practical calculations with 
rotations? Here are some questions that we recommend you ponder long enough to 
realize that they are cumbersome to answer by matrix methods .  Revisit this topic after 
doing Investigation E below. 

INVESTIGATION A. Show that the composition of two rotations is another rota
tion. (The composition of two rotations is the motion obtained by performing first one 
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rotation, then the other. Show by example that order counts .) Given geometric data 
(axes and angles) for two rotations, how do you determine the axis and angle for their 
composition? 

The problem of finding a convenient algebraic method for computing with rotations 
led William Rowan Hamilton to invent the quaternions in the mid- 1 9th century. The 
discovery of quaternions, and Hamilton's life in general, is a fascinating bit of history. 
For further reading, see biographies by Hankins [7] and O' Donnell [15] . Kuipers [10, 
§ 6.2 ff] gives an exposition of the rotation problem in Investigation A and its solution, 
beyond what appears in this section. 

Hamilton was inspired by the solution to the analogous problem in two dimensions: 
rotations of the plane about the origin can be encoded by unit length complex numbers. 
The angle of a rotation is the same as the angle made by its corresponding complex 
number, thought of as a vector in JR2 , with the positive real axis.  The composition 
of rotations corresponds to the multiplication of the corresponding complex numbers . 
Hamilton tried for years to make an algebra of rotations in JR3 using ordered triples of 
real numbers . One day he realized he could achieve his goal using 4-tuples. 

Here is Hamilton's invention: As a set (and as a vector space) the set of quaternions 
is identical to JR4. The three distinguished coordinate vectors (0, 1 ,  0, 0) , (0, 0, 1 ,  0) , 
and (0, 0, 0, 1 )  are given the names i ,  j, and k, respectively. The vector (a , b, c, d) is 
written a + bi + cj + dk when thought of as a quaternion. The number a is referred 
to as the real part and b, c, and d are called the i, j, and k parts, respectively. Like 
real and complex numbers, quaternions can be multiplied. The multiplication rules are 
encapsulated by the following relations . 

i 2 =/ = k2 = -1 

ij = k jk = i ki = j 

The elements i ,  j, and k do not commute. Reversing the left-right order changes the 
sign of the product. 

ji = -k kj = -i ik = -j 

Here is a sample multiplication. 

(3 + 2j) ( l  - 4i + k) = 3 - 12i + 3k + 2j - 8ji + 2jk 

= 2- 12i + 3k + 2i + 8k + 2i 

= 3 - lOi + 2j + l lk 

(distributing) 

(applying relations) 

(combining terms ) 

The conjugate of a quaternion r = a + bi + cj + dk, denoted r, is defined to be r = 
a - bi - cj - dk, which resembles the complex conjugate. The length or norm of a 
quaternion r ,  denoted II r II, is its length as a vector in JR4, J a2 + b2 + c2 + d2 . (The 
term norm, when applied to quaternions, is sometimes used in other treatments to 
denote the square of the Euclidean norm defined here.) .  

INVES TIGATION B. What algebraic properties do the quaternions share with the 
real or complex numbers? How are they different? In particular, verify the following 
things :  Show that quaternion multiplication is associative but noncommutative. (As
sociativity means that p (qr) = (pq)r for all quaternions p, q and r .) The norm of 
r = a+ bi + cj + dk can also be written as llr ll = �- The norm has the prop
erty llr s ll = llr ll lis II for all quaternions r and s. (Because of this, multiplying two 
unit length quaternions yields another unit length quaternion.) The set of unit length 
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quatemions,  viewed a s  points i n  JR4 , i s  the 3-sphere S3 . Each nonzero quatemion r has 
a multiplicative inverse, denoted r-1, given by 

-1 r 
r =w· 

When r is a unit quatemion, r-1 is the same as r. (Kuipers [10, Ch. 5] is a good source 
for other details about quatemion algebra.) 

Here is how a quatemion r determines a linear mapping R,: JR3 -+ JR3 . To a point 
p = (x , y, z) in 3-space, we associate a quatemion xi+ yj + zk. By slight abuse of 
notation, we will also call this p. Since the real part of p is zero we call it a pure 
quatemion. The quatemion product rpr-1 can be shown to be pure, and hence can be 
thought of as a point x' i + y' j + z' k = (x', y', z') in 3-space. We define the mapping 
R, by 

R,(x , y, z) = rpr-1 = (x', y', z') . 

(x', y', z') (x, y, z) 

R, 

Figure 2 A nonzero quatern ion r gives r ise to a rotation Rr i n  �3 

(2) 

INVESTIGATION C .  Is the mapping R, described in the previous paragraph indeed 
a linear map? Verify that this is the case. Moreover, show that the map determined by 
any nonzero real scalar multiple of r is equal to R,, that is, show that Rkr = R, for any 
quatemion r liilld any nonzero real number k. Show that when r :j=. 0, R, is invertible 
with inverse (R,)-1 = R(r-Il . 

From the "moreover" statement in this Investigation, whenever r :j=. 0, we are free 
to choose r to have norm 1 when working with the map R,, and we shall do so since 
this makes the analysis simpler; we may restrict our consideration to points on the 
3-sphere S3 in order to work with rotations given by quatemions. 

For r :j=. 0, it turns out that R, is a rotation of JR3 . The axis and angle of the rotation 
R, are elegantly encoded in the four coordinates (a , b, c, d) in the following way, when 
r is a unit quatemion. If r = ±1 , it is easy to see that R, is the identity mapping on 
JR3 • Otherwise, R, is a rotation about the axis determined by the vector (b, c, d), with 
angle of rotation () = 2 cos- 1 (a) = 2 sin-1 Cv'b2 + c2 + d2) .  To appreciate how nice 
this is, have a friend write down a 3 x 3 orthogonal matrix, say, with no zero entries ; 
now find the axis and angle of rotation. You will quickly appreciate the elegance that 
quatemions bring to this problem, as compared with matrix methods .  

The facts stated in the preceding paragraph are not supposed to be obvious .  The 
next investigation gives a sequence of exercises that outline the proof. For a detailed 
discussion, see Kuipers [10, § 5.15]. 
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INVESTIGATION D .  How does a unit quatemion encode geometric information 

about its corresponding rotation? Let r = a+ hi+ cj + dk be a unit quatemion. Ver
ify that if r = ± 1 ,  then Rr defined above is the identity mapping. Otherwise, show 
that Rr is the rotation about the axis vector (h, c, d) by the angle e = 2 cos- 1 (a) = 
2 sin -l ( .Jhz + c2 + d2) ,  as follows. 

1. Show that Rr preserves norm, that is ,  that II Rr(P) II = liP II for any pure quatemion 
p = xi + y j + zk. (This follows from the fact that the norm of a quatemion product 
equals the product of the norms.) 

2. Show that the linear map Rr has eigenvector (h, c ,  d) with eigenvalue 1 .  
3 .  Here is a strategy to compute the angle of rotation. Choose a vector w perpendicular 

to the eigenvector (h, c, d) . This can be broken down into two cases : if at least one 
of h and c is nonzero, we may use w = ci - hj . If h = c = 0, we may use w = i .  
Now compute the angle of rotation by finding the angle between the vectors w and 
Rr w using the following formula from analytic geometry, where the multiplication 
in the numerator on the right-hand side is the dot product in JR3 • 

w · Rr w 
cas e = 

l l wl l z 

In all cases the right-hand side equals a2 - h2 - c2 - d2 = 2a2 - 1 .  Now apply a 
half-angle identity to get a = cos(e /2) . 

Here is the fact that illustrates how Hamilton accomplished his goal to make an 
algebra of rotations.  

INVESTIGATION E .  Let r and s be unit quatemions .  Verify that 

In words rather than symbols :  the composition of rotations can be accomplished by the 
multiplication of quatemions .  Now go back and try Investigation A.  

The next investigation i s  appropriate for a student who has some experience with 
groups,  or could be a motivating problem for an independent study in the basics of 
group theory. (Armstrong [2] gives an excellent introduction to group theory with a 
geometric point of view.) 

INVES TIGATION F. The set of unit quatemions, S3 , with the operation of quater
nion multiplication satisfies the axioms of a group. The set of rotations in 3-space, with 
the operation of composition, is also a group, called S0(3) . The map q;: S3 -+ S0(3) 
given by r r-+ Rr is a group homomorphism. Each rotation R in S0(3) can be written 
in the form R = Rr for some r E S3 (that is, the map q; is surjective), and each rota
tion Rr has precisely two preimages in S3 , namely r and -r .  The kernel of q; is the 
subgroup { 1 ,  -1}, and we have an isomorphism of groups 

S3 / { 1 ,  - 1 1 � S0(3) . 

The 3-sphere, rotations, and the Hopf fibration 

We now reformulate the Hopf map in terms of quatemions. First, fix a distinguished 
point, say, Po = ( 1 ,  0, 0) = i ,  on S2 . (Any other point would work as well, but this 
one makes the formulas tum out particularly nicely.) Given a point (a , h, c, d) on S3 , 
let r = a+ hi+ cj + dk be the corresponding unit quatemion. The quatemion r then 
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defines a rotation R, o f  3-space given b y  (2) above. The Hopf fibration maps this 
quaternion to the image of the distinguished point under the rotation; in formulas, this 
is 

r 1-+ R, (P0) = r ir-1 = rir. (3) 

INVESTIGATION G. Verify that the two formulas (1) and (3) for the Hopf fibration 
are equivalent. 

Figure 3 The un i t  quatern ion r moves (1, 0, 0) to P via R,. The Hopf map takes r to P. 

Consider the point (1, 0 ,  0) in S2 . One can easily check that the set of points 

C = { (cos t ,  sin t, 0, 0) I t E IR} 

in S3 all map to (1, 0, 0) via the Hopf map h .  In fact, this set C is the entire set of 
points that map to (1, 0, 0) via h .  In other words, C is the preimage set h -1 ((I, 0 , 0)) .  
You may recognize that C is  the unit circle in a plane in IR4 . As we shall see, this is 
typical : for any point P in S2 , the preimage set h - 1 (P) is a circle in S3 . We will also 
refer to the preimage set h -1 (P)  as the .fiber of the Hopf map over P .  

We devote the remainder o f  this article to study one aspect o f  the geometry o f  the 
Hopf fibra�ion, namely, the configuration of its fibers in S3 . Using stereo graphic pro
jection (to be explained below) we get a particularly elegant decomposition of 3-space 
into a union of disjoint circles and a single straight line. Because this arrangement is 
fun to think about, we cast it first in the form of a puzzle. 

INVESTIGATION H. (LINKED CIRCLES PUZZLE) Using disjoint circles and a sin
gle straight line, can you fill up 3-space in such a way that each pair of circles is linked, 
and the line passes through the interior of each circle? 

It is the linked nature of the circles that makes this puzzle interesting. If the circles 
are not required to be linked, there are easy solutions .  For example, just take stacks of 
concentric circles whose centers lie on the given line (see FIGURE 4). We will show 
that the Hopf fibers themselves give rise to a solution to this puzzle, but see if you can 
think of your own solution first. 

We begin with an observation, presented in the form of an Investigation, on how to 
find rotations that take a given point A to a given point B. 

INVESTIGATION I. Given two points A and B on S2 that are not antipodal, how 
can we describe the set of all possible rotations that move A to B?  First, choose an arc 
of a great circle joining A to B and call this arc A B; note that the choice of arc is not 
unique, although the great circle is .  Convince yourself that if R is a rotation taking A 
to B, then the axis of R must lie somewhere along the great circle bisecting AB (see 
FIGURE 5). Along this great circle there are two axes of rotation for which the angle 
of rotation is easy to compute. 
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Figure 4 One way to fi iiJR3 with d i sjo i nt c i rc l es and a l i ne. Now try to arrange for every 
pa i r  of c i rc les to be l i n ked! 

Figure 5 The ax i s  of any rotat ion tak ing A to B must pass th rough the great c i rc l e  C that 
b i sects AB 

1 .  When the axis of rotation passes through the midpoint M of AB, the angle of 
rotation e is n radians or 1 80 degrees .  Let us call this rotation R1 (see the drawing 
on the left in FIGURE 6). 

2. When the axis of rotation is perpendicular to the vectors v = O�A and w = O�B, 
the angle of rotation is (plus or minus) the angle between v and w and is given 
by cos (8) = v · w. We will call this rotation R2 (see the drawing on the right in 
FIGURE 6). 

rotation R1 rotation R2 

Figure 6 Two rotations  taking A to B 

If a point r in S3 is sent by the Hopf map to the point P in S2, then by Investigation G 
we know that the rotation Rr moves the point ( 1 ,  0, 0) to P. We can use Investigation 
I to find the axis and angle of rotation for two rotations that map ( 1 ,  0, 0) to P. 
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Once we have axes and angles of rotation for the rotations R1 and R2 of Investiga
tion I, we can use Investigation D to find the quatemions r1 and r2 that map to R1 and 
R2 under the map ({J, that is, R1 = R,1 and Rz = R,2• 

INVESTIGATION J. W hat are explicit formulas for the quatemions r1 and r2 de
scribed above? For the point P = (p1 , p2 , p3 ) on S2 , verify that the quatemions r1 and 
rz are given by 

1 
r, = 

J2(1 + p,) 
((1 + Pl )i + pzj + p3k) , 

rz = J1 + P1 (1 + 
-p3j 

+ �). 
2 1 + p, 1 + P1 

Let us write eir for cost+ i sin t .  The fiber h- 1 (P) is given as a parametrically defined 
circle in �4 by either of the following. 

h-1 (P) = {rJei1 }og�2rr 

h-1 (P) = {rzei1 }og�2n 

The point P = ( -1, 0, 0) is a special case, and h-1 (( -1, 0, 0)) is given by 

h-1 ( (- 1, 0, 0)) = {kei1 } o�z�2n· 

Seeing the Hopf fibration 

Next we demonstrate a method that allows us to see a little of what is going on with 
the Hopf fibration. Our aim is to show pictures of fibers. We do this by means of 
stereographic projection, which may be familiar to readers from an article by Delman 
anQ Galperin [6] in the previous issue of the MAGAZINE. 

We begin by describing the stereographic projection of the 2-sphere to the x, y
plane. Imagine a light source placed at the "north pole" (0, 0, 1) . Stereographic pro
jection sends a point P on S2 to the intersection of the light ray through P with the 
plane as in FIGURE 7. 

P' 

Figure 7 Stereograph ic project ion 

The alert reader will notice that the point (0, 0, 1) has no sensible image under this 
projection. Therefore we restrict the stereographic projection to S2 \ (0, 0, 1) . 
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INVESTIGATION K. Verify that the stereographic projection described above is 
given by 

(x
' Y' z) �--+ ( 1 � z ' 1 � z) · 

Write out the inverse map JR2 � S2 \ (0, 0, 1). That is, given a point (a , b) in the plane, 
what are the (x , y, z) coordinates of the point on S2 sent to (a , b) by the stereographic 
projection? Show that a circle on S2 that contains (0, 0, 1) is mapped to a straight line 
in the plane. Prove that a circle on S2 that does not pass through the point of projection 
(0, 0, 1) is mapped by the stereographic projection to a circle in the plane. (Ahlfors [1 ,  
Ch.  1 § 2 .4]  gives a proof that stereo graphic projection preserves circles based on 
elementary geometry of complex numbers .)  

Like the definition of the sphere, stereographic projection generalizes to all dimen
sions, and in particular, it provides a projection map S3 \ (1, 0, 0, 0) � JR3 given by 

( X Y Z ) (w, x ,  y ,  z) �--+ -1--,-1--
, 
-1--

. 
- w - w - w 

(4) 

The point (1, 0, 0, 0) on S3 from which we project is an arbitrary choice, but it does 
make the formulas simple. 

The real power of stereographic projection is this :  it allows us to see all of the 3-
sphere (except one point) in familiar 3-space. This is remarkable because S3 is a curved 
object that resides in 4-space. 

The last property in Investigation K above-that stereographic projection preserves 
circles-holds in all dimensions [4, Chapter 1 8] .  We know from the previous section 
that fibers of the Hopf map are circles in S3 . It follows that stereographic projection 
sends them to circles (or a line, if the fiber contains the point (1, 0, 0, 0)) in JR3 • We 
conclude with two Investigations that show how the stereo graphic images of the Hopf 
fibers solve the linked circles puzzle. 

INVESTIGATION L. Let us denote by s the stereographic projection s : S3 \ 
(1, 0, 0, 0) � JR3 given in (4) . Then so h-1 ((1, 0, 0)) is the x -axis, so h-1 ( (  

-
1, 0, 0)) 

is the unit circle in the y ,  z-plane, and for any other point P = (p1 , p2 , p3 ) on S2 not 
equal to (1, 0, 0) or (-

1, 0, 0) , so h-1 (P) is a circle in JR3 that intersects the y ,  z-plane 
in exactly two points A and B, one inside and one outside the unit circle in the y, z
plane. This establishes that so h-1 (P) is linked with the unit circle in the y ,  z-plane. 
The points A and B lie on a line through the origin containing the vector (0, p3 , -p2) . 
The plane of the circle s o h-1 (P) cannot contain the x-axis (if it did, so h-' (P) 
would intersect S<D h-1 ( (1, 0, 0) ) ,  but fibers are disjoint) . From these observations we 
can conclude that the x-axis passes through the interior of the circles o h-1 (P) . See 
FIGURE 8. 

INVESTIGATION M. To show the linked nature of any two circles C and D that are 
projections of fibers, we exhibit a continuous one-to-one map 1/f: JR3 � JR3 that takes 
C to the unit circle in the y, z-plane, and takes D to some other projected fiber circle. 
Since the image of D is linked with the unit circle in the y ,  z-plane, as in FIGURE 8,  C 
and D must also be linked. (Students who have never studied topology may accept the 
intuitively reasonable statement that the linked nature of circles cannot be altered by 
a continuous bijective map, aided by FIGURE 9. Students with experience in topology 
may enjoy trying to prove this .) 
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�// /\ unit circle in y, z-plane 
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Figure 8 A gener ic projected Hopf fi ber. A and B mark the i n tersect ions of the f iber with 
the y, z-p lane .  

-

Figure 9 If the conti n uous b i jective images C', 0' of c i rc l es C, 0 are l i n ked, then C and 
0 must a l so be l i n ked . 

Here is how to construct the map 1jJ. Let P be any point on the circle C, and let 
r = s-1 (P) .  Define f: JR4-+ JR4 by f(x) = kr-1x (quaternion multiplication) . The 
map 1/1 is the compositions a fa s-1• 

h'-l·(Q) 
.:·h-1 (P€) \ 'CD : ' ' ' ' ' ' ' ' ' . 

s-3·· ... 

stereographic 
projection 

h 
-------

Hopf fibration 

S oh-1 (P) 
s oh-1 (Q) 

./J-�_,L-,.� 

Figure 10 Stereograph i c  project ions of Hopf f ibers. Any two projected fibers are l i n ked 
c i rc les, except so h-1 (1, 0, 0), wh ich is a l i ne .  

Conclusion 

We have explained how to understand the Hopf fibration in terms of quaternions .  In the 
process, we showed how the algebra of rotations in 3-space is built into the workings 
of the Hopf map. 
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Topics raised in the Investigations suggest many lines of inquiry for independent 
student research. For example, making computer animations of linked Hopf fibers has 
been an independent study research project for two of our undergraduate students . 
FIGURE 11 shows an image from the software written by Nick Hamblet (see Acknowl
edgment below) . The left panel shows a set of points lying on a circle in the codomain 
S2 of the Hopf fibration. The right panel shows, via stereographic projection, the fibers 
corresponding to those points . An ongoing project is to build a web tutorial site fea
turing the animations . The reader who finds topics in this article appealing will enjoy 
a related article [18]. For general inspiration, and more on the geometry of �3 and 
rotations, see Hermann Weyl's lovely book Symmetry [16]. 

Transparent Axes Resets ... Rotations 

Figure 11 Screens hot of Hopf fiber software 

Acknowledgment. We are grateful to Lebanon Valley College for summer sup
port for Nick Hamblet's software development project. Nick Hamblet is a student at 
Lebanon Valley College, class of 2004. His work builds on joint work of the author 
with Paul Hemler, Professor of Computer Science, and Keely Chom, class of 1999, 
both at Wake Forest University. 

REFERENCES 
I. L. Ahlfors, Complex Analysis, McGraw-Hill, New York, 3rd ed., 1979. 
2. M.A. Armstrong, Groups and Symmetry, Springer-Verlag, New York, 1988. 
3. T. Banchoff and J. Wenner, Linear Algebra Through Geometry, Springer-Verlag, New York, 1983. 
4. M. Berger, Geometry, Springer-Verlag, New York, 1994. 
5. H. S.M. Coxeter, Introduction to Geometry, John Wiley and Sons, New York, 2nd ed., 1989. 
6. C. Delman and G. Galperin, A Tale of Three Circles, this MAGAZINE 76:1 (2002), 15-32. 
7. T. L. Hankins, Sir William Rowan Hamilton, Johns Hopkins University Press, Baltimore, 1980. 
8. D. Hilbert, Geometry and the Imagination, Chelsea Publishing, New York, 1952. 
9. H. Hopf, Ober die Abbildungen der dreidimensionalen Sphlire auf die Kugelfliiche, Math. Ann. 104 (1931), 

637-665. 
10. J. B. Kuipers, Quatemions and Rotation Sequences, Princeton University Press, Princeton, NJ, 1999. 
II. J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, New York, 1994. 
12. G. Martin, Transformation Geometry, Springer-Verlag, New York, 1982. 



98 MATHEMATICS MAGAZINE 

13. R. Mosseri and R. Dandoloff, Geometry of entangled states, Bloch spheres and Hopf fibrations, J. Phys. A 34 
(2001), 10243-10252. 

14. M. Nakahara, Geometry, Topology and Physics, Institute of Physics Publishing, Philadelphia, 1990. 
15. S. O'Donnell, William Rowan Hamilton: Portrait of a Prodigy, Boole Press, Dublin, 1983. 
16. H. Weyl, Symmetry, Princeton University Press, Princeton, NJ, 1980. 
17. P. Zenor, E. Slaminka, and D. Thaxton, Calculus with Early Vectors, Prentice Hall, Upper Saddle River, New 

Jersey, 1999. 
18. L. Zulli, Charting the 3-sphere-an exposition for undergraduates, Amer. Math. Monthly 103:3 (1996), 221-

229. 

Mathematics Awareness Month: 
Mathematics and Art 

Bob Brill makes art by c�posing simple computer algorithms that generate imagery. 
There are worlds of order and beauty lying dormant in our various mathematical sys
tems, waiting to be made visible by these algorithmic processes. This is the beauty of 
pattern, rhythm, symmetry, asymmetry, balance, and movement. These are the worlds 
he explores in his art. "Mathematics," Brill says, "more than any other human activ
ity, seems to offer connections to the underlying order of the world. This is a great 
inspiration for an artist and a great challenge." 

"Beyond Lissajous," by Bob Brill. Visit the artist's website: see http: I /users. 
migate.net/-bobbrill. 

For more about Math Awareness Month, see page 118. 
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So little time, so much to read ! Why waste a single precious minute on a fellow who 
gives every indication of being a nut (and a rather cranky and unpleasant nut at that)? 
Sample the writings of the eccentric American polymath Charles Sanders Peirce and 
you will be rewarded with passage after passage that is either incomprehensible or 
absurd (crack-brained trash, to use two of Peirce's  favorite terms of abuse) . For absur
dity, consider Peirce's assessment of A Guess at the Riddle, a book he never managed 
to finish, much less publish: "The undertaking which this volume inaugurates is . . .  to 
outline a theory so comprehensive that, for a long time to come, the entire work of hu
man reason . . .  shall appear as the filling up of its details ." Mind you : The entire work 
of human reason ! As for incomprehensibility, we shall encounter a prime example in 
a moment. We may then feel sympathy for Simon Newcomb, the distinguished as
tronomer and long-time editor of the American Journal of Mathematics, who once 
complained that Peirce employed an expository style that "the human mind cannot 
follow." 

So why read Peirce? Well, as everyone who looks into the matter eventually con
cedes, Peirce was ferociously smart. If he turned his mind to a problem, there was 
always a good chance he would dig deep. Furthermore, Peirce's very crankiness and 
perversity stem, in part, from an outlook and disposition that may endear him to readers 
of this MAGAZINE. Peirce was the Outsider (his occasional pseudonym), Emerson's  
American Scholar who "cannot be fed on the sere remains of foreign harvests ." The 
literary historian David Porter's  ruminations on Emily Dickinson include an observa
tion that fits Peirce beautifully : "The solitary figure, giving the world names as if for 
the first time: that is quintessentially the American voice." In this special sense, Peirce 
was thoroughly American. He would not just dig deep, he would dig here when every
one else dug there; he would dig slant when everyone else dug straight (for example, 
read Dauben [7] for Peirce's approach to infinite sets) .  The many volumes of his writ
ings are littered with insights stimulating as much for their oddness as for their acuity. 
When Peirce is at his best, the oddness stimulates much more than it dismays.  

This essay reviews one of Peirce's successful and suggestive slantwise attacks on a 
classic problem: the number of partitions of a finite set. For readers who do not live 
and breathe combinatorics, here is a little background. 

Animal teams and rhyming schemes 

Last year, my daughter Emily, then seven years old, brought home an assignment that 
particularly attracted her father's  interest. She was to select several items and then 
describe various ways of sorting them into families or teams. Emily chose four ani
mals from her farm set and was happily, but haphazardly, trying out one combination 
after another, when her spoilsport father recommended a more systematic approach. 
How many ways are there of sorting the four animals into four teams? Emily quickly 
recognized that there is one way : 
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Team A:  Cow 

Team B :  Horse 

Team C:  Sheep 

Team D:  Rooster. 

How many ways are there of sorting the four animals into one team? That's easy. 
Again, the answer is one: 

Team A: Cow, Horse, Sheep, Rooster. 

How about two teams? Not quite so easy, but a little fiddling produced the answer 
seven. And three teams? That would be six. Now the numbers S (n ,  k) , the Stirling 
numbers of the second kind, give precisely the number of ways of sorting n farm ani
mals into k teams. So we had determined that: S (4 ,  1 )  = 1 ;  S (4, 2) = 7; S (4 ,  3) = 6; 
S (4, 4) = 1 .  If you sort four farm animals into teams, you have to end up with either 
one, two, three, or four teams. So if you add up our Stirling numbers, you obtain the 
total number of ways of sorting four farm animals into teams.  This number is B4, the 
fourth Bell number. So B4 = 1 + 7 + 6 + 1 = 1 5 .  Leaving aside the farm animals, we 
say that there are 1 5  partitions of any set with exactly four members . More generally, 
there are Bn partitions of any set with n members . 

It would be a poor sort of combinatorial object that had only one interpretation 
and, indeed, there are other ways of thinking about the Bell numbers . Consider the 
following arrangement of the farm animals :  

Team A: Cow 

Team B :  Horse, Rooster 

Team C :  Sheep. 

We could communicate the same information by writing 

Cow: Team A 

Horse: Team B 

Sheep : Team C 

Rooster: Team B .  

Or, having fixed the order Cow, Horse, Sheep, Rooster, we could just write ABCB, 
which we can recognize as a rhyme scheme for a stanza of four lines. 

Faith is a fine invention 
For Gentlemen who see
But Microscopes are prudent 
In an Emergency! 

--Emily Dickinson [8] 

Since we can always represent a partition as a rhyme scheme and vice versa, we see 
that the Bell number Bn is both the number of partitions of an n-membered set and the 
number of rhyme schemes for a stanza of n lines. This will turn out to be important as 
we struggle to understand Peirce, to whom we now return. 

The Bell numbers in Peirce 

Peirce did not originate the Bell numbers any more that E. T. Bell did. Christian 
Kramp, a Strasbourg physician to whom we owe the notation n !  for the factorial func
tion, beat him out by nearly a century. (For a taste of the history, see Bell [ 4], Gould [9], 
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and Rota [12] .) Our thesis is that Peirce offers a new perspective on what is old and 
familiar. Peirce's discussion of the Bell numbers occurs in one of his best known pa
pers : "On the Algebra of Logic" of 1880 [10] . Readers of this work might, however, 
be forgiven for having overlooked this. Peirce introduces the topic as follows . 

A relative is a term whose definition describes what sort of a system of objects 
that is whose first member (which is termed the relate) is denoted by the term; 
and names for the other members of the system (which are termed the correlates) 
are usually appended to limit the denotation still further. [10, p. 43] 

Say what? Perhaps this is the sort of prose we should expect from a stylist who once 
responded to an editor's insistence on a word limit by cleansing his manuscript of 
pronouns and articles. Further along in "Algebra of Logic," Peirce announces, without 
any explanation or argument, that the number of "individual forms for the (n + 2)-fold 
relative" is 

n 1{ n  n } 2 + (2 -1) . 3 + - (3 -1) - 2 (2 -1) . 4 
2! 

+ ;, {(4n -1)-3 (3n-1) + 3 (2n -1 ) }  • 5 
1 + 4! {(5n -1) -4(4n -1) +6(3n -1) -4(2n -1 ) }  · 6 

1 + 5! {(6n-1)-5 (5n- 1 )  + 10 (4n-1)- 10 (3n-1) + 5 (2n- 1 ) } . 7 + etc. 

What sense can we make of this? We are to consider certain "terms" called "rela
tives." These relatives come in various flavors (unary, binary, ternary, . . .  ). The num
ber of "forms" of the relative of a given flavor is expressed by rather a long formula. 
Beyond these scraps of meaning, little is to be discerned-at least, at first. Once we 
suppress our initial exasperation, we notice that it could be fun, even rewarding, to 
puzzle this out. Start with one term of Peirce's formula. 

1 4! {(5n-1)-4 (4n-1) + 6 (3n-1)-4 (2n -1 ) }  · 6. 

Rewrite it as 

:, { (�) (5n _ 1) _G) (4n _ 1) +G) (3n _ 1) _ G) (2n _ 1) +G) on_ 1) l. 
Distribute the binomial coefficients (:) and rearrange the terms:  

:! 
{ (�)5n-G)4n + G)3n _ G)2n + (:)1n 
-(�)+G)-G)+ G)-(:) l · 

A familiar identity with binomial coefficients is 

- (�) + (1)- (�) + (�)- (!) = 0. 
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S o  we obtain 

Rewrite again as 

Call this the Peirce number P (n ,  4) and in general define 

k + 2 k (k) P (n , k) = -
,
- � )-1r (k + 1-tt. 

k. 1=0 t 

Finally, notice that the number of "individual forms for the (n + 2)-fold relative" is 

n 
L P (n ,  i ) .  
i=O 

Students of combinatorics may now have a feeling of deja vu. Peirce's  approach is 
reminiscent of the development of the Bell numbers via the Stirling numbers of the 
second kind. 

1 k (k) S (n , k) =I L (-1)1 (k-t)n 
k. 1=0 t 

n 
Bn = L S (n , i )  

i=O 

To connect the two approaches note that 

So 

k + 2 k (k) k + 2 k+ I (k + 1) - L: (-1)1 (k+1-tr= L: (-1r (k+1-t)n+l. 
k! 1=0 t (k+l)! 1=0 t 

P (n ,  k) = (k + 2) S (n + 1, k + 1). 

We can make combinatorial sense of this equation. S (n ,  k) is the number of rhyme 
schemes for a stanza of n lines with k rhyming syllables. So, for example, S (3 ,  2) = 3 
since there are 3 rhyme schemes for a stanza of 3 lines with 2 rhyming syllables : 
AAB, ABA, ABB .  Suppose we want to lengthen these schemes by adding a fourth 
line . There are two ways to do this. We could add a new occurrence of one of the 2 
letters that already occur (AAB, for example, could become AABA or AABB) or we 
could add an occurrence of the next available letter (AAB could become AABC). The 
number of schemes we could obtain in this way is 3 · S (3 ,  2),  that is, P (2 , 1). More 
generally, P (n , k) is the number of rhyme schemes we can obtain if we start with the 
schemes for n + 1 lines with k + 1 rhyming syllables and lengthen them by one line 
(by adding letters at the end). Every stanza of n + 2 lines has at least 1 but no more 
than n + 1 rhyming syllables in its first n + 1 lines. So if we take the sum of all the 
Peirce numbers P (n ,  k) from k = 0 to k = n ,  we obtain the number of rhyme schemes 
for a stanza of n + 2 lines. As we have seen, this is the Bell number Bn+2· So 
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Bn+2 = L P (n ,  i )  
i=O 
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and the number of "individual forms for the (n + 2)-fold relative" is the same as the 
number of rhyme schemes for a stanza of n + 2 lines . 

Perhaps a form for the (n + 2)-fold relative is just a rhyme scheme for a stanza 
of n + 2 lines (as H. W. Becker asserted long ago [3]). Peirce says as much in a 
manuscript only recently published [11], though thought to date from around 1889. 
Peirce also helps us out by "setting down a few forms ." 

Monads Dyads Triads Tetrads 
A AA AAA AAAA 

AB AAB AAAB 
ABA AABA 
ABB AABB 

ABAA 
ABAB 
ABBA 
ABBB 

ABC AABC 
ABAC 
ABBC 
ABCA 
ABCB 
ABCC 

ABCD 

Note the three lines (one in the Triad column, two in the Tetrad column) that Peirce's  
editors have conscientiously reproduced. We can understand them completely : they 
separate schemes enumerated by distinct Peirce numbers. Look at the two lines in 
the column of tetrads. Above the first are the 2 = P (2, 0) tetrads whose initial triads 
consist entirely of As. Between the first and second lines are the 9 = P (2, 1) tetrads 
whose initial triads consist of As and Bs .  Below the second line are the 4 = P (2,  2) 
tetrads whose initial triads consist of As, Bs,  and Cs .  There are no other tetrads .  So 
2 + 9 + 4 = B4 is the total number of tetrads. 

We can also understand Peirce's  spacing convention. The spaces in each column 
separate schemes enumerated by distinct Stirling numbers . Above the first space in 
the column of tetrads is the 1 (= S (4 ,  1)) scheme consisting entirely of As. Between 
the first and the second spaces are the 7 = S (4 ,  2) schemes consisting of As and Bs .  
Between the second and the third are the 6 = S (4 ,  3 )  schemes consisting of  As ,  Bs,  and 
Cs. Below the third is the 1 =' S (4, 4) scheme consisting of As, Bs ,  Cs, and Ds .  Perhaps 
this system of lines and spaces was intended to help us see the relationship between 
Stirling numbers of the second kind and Peirce numbers . As we pass from column 
to column, the scheme above the first space doubles to form the schemes above the 
first line; the schemes between the first and second spaces triple to form the schemes 
between the..first and second lines;  the schemes between the second and third spaces 
quadruple to form the schemes between the second and third lines;  and so on. 

Although Peirce does not mention it (and may not have realized it) , the Peirce num
bers satisfy a simple recurrence relation. To put the matter somewhat differently, the 
Peirce numbers are the unique solution of the following system of equations (where n 
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and k are natural numbers): 

P (n ,  0) = 2 

P (O,  k) = 0 if k > 0 

k + 2  
P (n + 1 ,  k) = 

k + 1 
P (n ,  k - 1 )  + (k + 1) P (n ,  k) . 

To make combinatorial sense of this last equation, first rewrite it as 

P (n + 1 ,  k) = (k + 2) -- P (n ,  k - 1) + -- P (n ,  k) . 
( 1 k + 1 ) 

k + 1 k + 2  

We know that 

P (n + 1 ,  k) = (k + 2) S (n + 2, k + 1 ) .  

S o  we want to show that ( 1 k + 1 ) 
-- P (n ,  k - 1 )  + -- P (n ,  k) = S (n + 2, k + 1 ) .  
k + 1 k + 2  

The right-hand side is the number of rhyme schemes for a stanza of n + 2 lines with 
k + 1 rhyming syllables .  Divide up these schemes according to the number of rhyming 
syllables in their first n + 1 lines.  There are only two possibilities .  

• Case 1 :  in the first n + 1 lines, k rhyming syllables occur. Then a brand new 
rhyming syllable must occur in line n + 2. This gives us the numerator of the frac
tion 1 / (k + 1 ) .  The denominator k + 1 is just the number of syllables that can 
normally be used to lengthen a stanza that already features k syllables .  The Peirce 
number P (n , k - 1 )  is the number of rhyme schemes we could have obtained if we 
had been able to employ all those k + 1 syllables .  

• Case 2 :  in the first n + 1 lines, k + 1 rhyming syllables occur. Then one of the 
k + 1 rhyming syllables already present must occur in line n + 2. This gives us the 
numerator of the fraction (k + 1 )  I (k + 2) . The denominator k + 2 is the number of 
syllables that can normally be used to lengthen a stanza that already features k + 1 
rhyming syllables. The number of rhyme schemes we could have obtained if we had 
been able to employ all those k + 2 syllables is P (n , k) . 

Our recurrence relation makes it easy to generate Peirce numbers. Here is a table 
with a few values of P (n , k) . 

IX 0 1 2 3 4 s 6 7 8 9 Bn+2 

0 2 0 0 0 0 0 0 0 0 0 2 
1 2 3 0 0 0 0 0 0 0 0 5 
2 2 9 4 0 0 0 0 0 0 0 15 
3 2 2 1  24 5 0 0 0 0 0 0 52 
4 2 45 1 00 50 6 0 0 0 0 0 203 
s 2 93 360 325 90 7 0 0 0 0 877 
6 2 1 89 1 204 1 750 840 147 8 0 0 0 4 1 40 
7 2 3 8 1  3864 8505 6300 1 862 224 9 0 0 2 1 1 47 
8 2 765 1 2 1 00 38850 4 1 706 1 8522 3696 324 1 0  0 1 15975 
9 2 1533 37320 1 70525 255 150 1 59789 47040 6750 450 1 1  678570 
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By summing each row, we obtain the Bell numbers B2 through B11• Peirce also 
noticed a much simpler way to generate Bell numbers. He recognized that if we write 
down Bell numbers B1 through Bn+ 1 and construct their difference table, we obtain Bn . 
For example, B1 through B6 yield B5: 

1 2 
1 3 

2 
5 

5 1 5  
10  

7 27 
20 

1 5  67 
52 

52 203 
37 1 5 1  

1 14 
87 

(The history of the Bell numbers is a tricky business. Comtet [6] attributes this result 
to A. C. Aitken [1] even though Peirce reached it five decades earlier.) Peirce observed 
that we can now obtain, by reflection, a table of sums in which the first n Bell numbers 
yield Bn+ l : 

1 1 
2 3 

5 
1 5  

2 5 
7 

10  27 
37 

52 1 5 1  
203 

1 5  52 
20 67 

87 
1 14 

Since the binomial coefficient function gives the number of times that a number in 
row one contributes to the final sum, this is equivalent to the well-known formula 

Peirce noted that this summation property provides the following algorithm for gener
ating the Bell numbers. Write down two 1 s  and record their sum below them. 

1 1 
2 

Copy down the new term in row one and again take sums. 

1 1 
2 3 

5 

2 

Repeat this process to obtain as many Bell numbers as you wish. (Emily entertained 
herself by filling up an entire sheet of paper in this way.) Peirce may not have been the 
first mathematician to recommend this technique. He was certainly not the last: it was 
rediscovered as recently as 1 962 [2, 5]. 

Conclusion 

Peirce seems to have thought that his formula for the Bell numbers was original. He 
notes with apparent pride [11] that the number of forms of a given plurality (that is ,  
the number of rhyme schemes for a stanza of a given length), " . . .  has the value given 
by me." He then cites his article in the American Journal of Mathematics [10]. While 
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we know the Bell numbers were studied before Peirce, I have not uncovered evidence 
that the Peirce numbers were anticipated by anyone. Since the sequence of Peirce 
numbers (2, 2, 3, 2, 9, 4, 2, 2 1 ,  24, 5 ,  . . .  ) appeared only recently (April 10, 2002) on 
N. J. A. Sloane' s  list of more than 67,000 integer sequences [13] , with no references to 
any literature, one suspects that they have not been the objects of much study. Really, 
though, questions of priority are not our main interest here. 

Peirce offers an approach to the Bell numbers that is probably new to most students 
of combinatorics .  As a bonus he sets us some puzzles that are stimulating and, once we 
start to make some progress, even fun. Fresh, stimulating, diverting: I suspect this is 
how most mathematicians would view Peirce if only they could overcome their initial 
feelings of disorientation. There are many gems to be mined. I have given just one 
example. See what you can find ! 
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Additional solution to Q92 9  on page 1 52.  No peeking! 

A929. Solution II. Let the vertices of the quadrilateral be labeled ABCD. Extend the 
great circle arcs containing AD and BC so they meet in points E and F, as shown in the 
accompanying figure. Because LBEA � LDFC, LABE � L CDF, and LBAE � LDCF, 
it follows from the AAA congruence theorem for spherical triangles that MBE � 
f::,CDF. Thus AB = CD. Because the two arcs of the lune EBCFDA are equal in length, 
it follows that AD = CB. 
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The D i n ner- D i ner  Match i ng Prob l e m  

B A R B A R A H .  M A R G O L I U S  
C l eve land State U n ivers i ty 

C l eve land,  O h i o  44 1 1 5  
b . margo l i us@csuoh io.edu 

At the Spring 2000 meeting of the Ohio section of the MAA in Huntington, West Vir
ginia, there was a banquet for NExT fellows ,  untenured faculty in the section' s  faculty 
development program. Each attendee had selected a dinner from among four entrees .  
The following orders had been placed by the twenty-two guests : 1 pasta vegetarian, 
8 chicken cordon bleu, 6 prime rib, and 7 filet of sole dinners. None of the guests 
could say with certainty what they had ordered for dinner, leaving the server greatly 
distressed. 

DINNER-DINER MATCHING PROBLEM . If the dinners are served randomly, what 
is the probability distribution of the number of diners who are served what they or
dered? 

This is a matching problem, or a problem with restricted position. Such problems 
have a long history in classical probability and are often described as card-matching 
problems. Barton [2] gives an extensive history of these through 1 958 .  Also see the 
article by Knudsen and Skau [11], appearing recently in this MAGAZINE, and refer
ences therein. Generalizations of this problem were solved by Greville in 1 94 1  [8] and 
Anderson in 1943 [1]. 

Rook numbers and the exact distribution 

It is possible to compute the exact distribution for this matching problem. Each pos
sible assignment of dinners to diners may be represented uniquely on a square chess
board with the entrees (or dinners) represented by columns and the diners represented 
by rows .  Assignments of dinners to diners are represented in the square below by 22 
dots, no two in the same row or column. These dots may be thought of as rooks. Since 
a rook in chess may capture (or take) a piece only in its own row or column, the rooks 
arranged in this way are referred to as nontaking or nonattacking rooks. The small 
circles in diagonal blocks of cells represent assignments that would match a diner to 
the dinner that he ordered. 

The configuration shown has no diners receiving the dinners that they ordered. Let 
N be the total number of diners, and n; be the number who ordered the i th entree of 
m entrees, so that 2:;':,1 n; = N. In the example, n 1 = 1 ,  n2 = 8, n3 = 6, and n4 = 7. 
There are m = 4 entrees and the total number of dinners ordered is N = 2:;':,1 n ;  = 22. 
Of the eight diners who ordered chicken, one is served pasta, three are served prime 
rib, and four filet of sole. There are 22 ! ways of placing 22 nonattacking rooks on 
this board. If the dinners are assigned randomly, then we consider each of these ar
rangements of rooks on the board (of assignments of dinners to diners) to be equally 
likely. 

Denote by X (N) the number of matches of dinners to the diners who ordered 
them. If A; denotes the event that there is a match of the i th diner to his order 
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TABLE  1 :  P lacement of 2::;:1  n i  = N nonattacki ng rooks 

Type of Entree Ordered 

Diners by � 
Entree Ordered 

" 
Chicken Prime Rib 0.. 

Pasta 0 • 
Chicken 0 0 0 0 0 0 0 0 • 

• 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 • 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 • 
0 0 0 0 0 0 0 0 • 

Prime Rib 0 0 0 0 0 0 
• 0 0 0 0 0 0 

0 0 0 0 0 0 • 
• 0 0 0 0 0 0 

• 0 0 0 0 0 0 
0 0 0 0 0 0 

Filet of Sole • 0 0 
• 0 0 

• 0 0 
• 0 0 

• 0 0 
• 0 0 

• 0 0 

(i = 1 ,  2, . . .  , N), then by the inclusion-exclusion theorem, we have 

where 

P(X (N) = j } = t(- l)s-j (�) B, (N) 
S =j j 

Bs (N) = 

Filet of Sole 

• 
• 

• 

• 

• 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

( 1 )  

(2) 

We can derive a formula for the numbers Bs (N) using the chessboard analogy. Sup
pose that we are able to count the number of ways that j of the N nonattacking rooks 
may be placed in the diagonal blocks with circles without regard to the placement 
of the other N - j rooks, and that this number, called a rook number, is r j .  In the 
example, r1 = 1 + 82 + 62 + 72 = 150 because there are 1 50 squares with circles in 
them that indicate a diner has been served the dinner that he ordered. If j rooks are 
placed in the diagonal blocks that represent matches of dinners to diners, then there 
are (N - }) ! ways that the other rooks may be placed without regard to whether their 
placement results in a match or not. Because there is no restriction on the placement of 
the remaining N - j rooks, the number rj (N - }) ! is an overcount of the number of 
ways of placing j nonattacking rooks in the restricted positions on the chessboard that 
represent matches of diners to the dinners that they ordered. Since there are a total of 
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N !  possible placements of the rooks so that they are nonattacking, the quantity Bs (N) 
can be computed in terms of these rook numbers and is given by 

rs (N - s ) !  
Bs (N) = 

N!  
. 

Substituting in to ( 1 )  the probability of exactly j matches is 

P{X (N) = j }  = :t( - l )s-j (�) rs (N - s ) !  / N ! . 
s=; J 

(3) 

If we know what the rook numbers r j are, then we can compute the probability 
distribution exactly. Consider an n ;  x n; chessboard. There are n; ways of placing the 
first rook, which may go anywhere on the board, (n;  - 1 )2 ways of placing the second 
rook which may go anywhere on the board except the row and column the first rook 
was placed in, and continuing in this manner, there are (n ;  - (j - 1) )2 ways of placing 
the jth nonattacking rook. There are j !  orders in which the rooks may be placed, so 
for an n;  x n ;  board, the jth rook number, which we will designate r;n; ) , is 

(n; ) _ n; (n ;  - 1 ) 2 · · · (n ;  - (j - 1) )2 _ (n ;) 2 
.
, rj - . , 

- . J . .  
J . J 

We are not interested in an n; x n; board, but rather in one like the example. The 
n; x n; diagonal blocks indicate restricted positions. The rook numbers for this more 
complicated board will give the number of ways of placing j nonattacking rooks in 
any of the L�=1 n; restricted positions .  Because placement of a rook in one of the 
blocks does not limit our ability to place a rook in one of the other blocks (the separate 
blocks of restricted positions do not share any rows or columns), we may compute the 
rook numbers by summing all possible products of the rook numbers for the individual 
blocks such that the indices sum to j ,  so 

m 
r;· = '""' n r (n; ) 

� s; ' 
s! +sz + · +sm=j i=1 

where s; is the number of rooks placed in restricted positions in the i th block, and the 
s; form an ordered partition of j .  To get these numbers, we may write down the rook 
polynomial 

m ( n; ( ) 2 ) 
R(x) = n L n

_
; 

j ! xj 
. 

1=1 ;=I  } 
(4) 

The rook number, rj , is the jth coefficient of this polynomial. More background on 
rook polynomials is available from a variety of sources [19, 21, 22, 26]. We now have 
enough information to answer the problem posed at the beginning of this article . We 
used Maple to calculate the generating function for the probabilities, where the coeffi
cient of tk is the probability of k matches .  

1 2 2  167 20 24 1 1 9 1 2 1 6 1  1 8  

7682 154480 
t 

+ 7682 1 54480 
t + 1 920538620 

t + 7682 1 54480 
t 

7 1  17 1 549 16 280 1 1 5 9268 1 14 1 1 8843 1 3 + 7034940 
t + 24387792 

t + 9 145422 
t + 73 1 63376 

t + 27436266 
t 

4569883 1 2 1 660069 1 1  6 1 53893 10 1 1 7257 9 + 3658 1 6880 
t + 54872532 

t + 99768240 
t + 1 1 1 0780 

t 
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38678394 1 8 23978 7 4474 1 5 8 1  6 2 1 988283 5 
+ 25607 1 8 1 60 

t + 1 33705 
t + 25607 1 8 1 6  

t + 160044885 
t 

326784389 4 1 826989 3 7339561  2 78025 288 1 
+ 3841077240 

t + 457271 1 0  
t + 548725320 

t + 27436266 
t + 9976824 

We use these probabilities to produce FIGURE 1 .  The dinner probability distribution 
is shown together with a normal distribution with the same mean and variance, and a 
Poisson distribution with the same mean. 

0.2,--------------------------..., 

0. 1 8  

0. 1 6  

>. 0. 1 4  

§ 0. 1 2  

� 0. 1 ..0 � 0.08 

0.06 

0.04 

11111111111 Dinner 
- Normal 

• Poisson 

0 1 2 3 4 5 6 7 8 9 1 0  I I  1 2  1 3  14 15 1 6  17 1 8  1 9  20 2 1  22 

Number of Matches 

Figure 1 Ohio  N ExT d i nner-d i ner match i ng p robab i l i t ies 

Approx i mat ing d istr ibut ions : Normal and Po isson 

The close match between the exact distribution and a normal distribution suggests 
that the dinner-diner probability distribution may be well approximated by the nor
mal distribution. In the present section, we explore the asymptotic behavior of these 
distributions . 

We have been considering the Ohio NExT dinner problem in which the number of 
entrees ordered varies with the entree. Suppose we are at a dinner party with m entrees 
to choose from, and each entree has been ordered by k diners (so ni = k for each type 
of entree i ) .  We can model the cases where m is four and k is thirteen (or k is four 
and m is thirteen) with two decks of playing cards. Lay the first deck out in order 
by suits and within suits by rank. Shuffle the second deck and lay it out next to the 
first. A match occurs when two cards of the same suit (same rank) are side by side. 
(See FIGURES 3 and 4 at the end of this note for probabilities related to this example.) 
Knudsen and Skau [11] considered this type of matching problem and obtained the 
limiting distribution as m, the number of ranks (the number of types of entrees) , tends 
to infinity. In the theorem below, PJk,m) is the probability of exactly j matches when 
there are m ranks and k of each rank and a match occurs when adjacent cards are of 
the same rank. The theorem shows that this distribution is asymptotically Poisson with 
mean k equal to the number of cards of each rank. 

THEOREM 1 .  (KNUDSEN-S KAU) If we have two decks of cards each with mk 
cards, m ranks and k cards of each rank, the limit of the number of matches is Poisson 
with parameter ). = k, that is 

kj 
lim p(k ,m) = -e-k , j = 0, 1 ,  2 . . . .  

m--->oo 1 j !  
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The previous theorem is a special case of their results . They showed that the limiting 
distribution is Poisson when the restricted positions are k x l rectangles .  Barton [2, 5] 
proved a more general result. 

THEOREM 2. (BARTON) If we have two decks of cards each with N cards and m 
suits, the first deck with n; cards of suit i and the second deck with m; cards of suit i 
so that I::, n; = L�= ' m; = N, all n; and m; bounded, and we let m and N tend to 
infinity so that 

is constant, then the limit of the number of matches is Poisson with parameter A.. 

The proof of this theorem is based on the moment convergence theorem [25] . In the 
particular case of the Poisson distribution, this was proved in 1 92 1  by Mises [16] . 
Barton shows that the factorial moments of this distribution 

/.L[j] = E (X (X - 1) · · · (X - j + 1 ) )  (5) 

tend to A.j as m, N -+ oo .  These are the factorial moments of the Poisson distribution, 
so this card-matching distribution is asymptotically Poisson. 

We are concerned with the case where the restricted positions are k x k squares, 
which we will generalize to the case where the restricted positions are squares of vary
ing sizes .  Knudsen and Skau consider the limit as the number of squares (number of 
choices of entrees) tends to infinity. We consider the limit where the number of squares 
is fixed, but their size (the number of guests who have chosen each entree) tends to in
finity. They conjecture that "k = m represents the actual breakpoint for the distribution 
to be asymptotically Poisson," [11 ] .  David and Barton [5] address this question as well. 

The answer to this question is contained in the following theorem. 

THEOREM 3. The random variable 

X (N) - k 
y 

( N) = :-k ,j-;(:;=m=_==;::cl)::;::/ (:;=m::::;::k=
-:::::;1�)) 

has asymptotically normal distribution as k -+ oo with parameters (0, 1) ,  where 
X (N) is a random variable representing the number of matches for the dinner problem 
with a choice of m entrees with k diners having selected each entree. The expectation 
ofX (N) is 

and its variance is 

Remark 

E{X (N) } = f.L = k ,  

2 k2 (m - 1 )  
()' = . 

(mk - 1 )  

Note that a Poisson random variable has equal mean and variance, but the variance for 
the dinner distribution is strictly less than the mean for k > 1 .  When k is large, 

(6) 
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For large m,  ( 1  - � ) is close to one s o  the mean and variance are nearly equal, and the 
Poisson distribution, which is approximately normal for large values of its parameter, 
is a good approximation to the dinner distribution for large k. If m is small, then the 
Poisson distribution is a poor approximation for the dinner distribution. See http :  I I 
academi c .  csuohi o . edulbmargol iusldinnerlcards . htm for graphs for vari
ous dinner-diner matching distributions that illustrate this idea. 

To prove this theorem, we first find the mean and variance of the distribution, and 
then use an idea from statistics to show that the distribution is asymptotically normal. 
By ( 1 )  and (2) we have 

(7) 

for s = 0, 1 ,  2, . . .  , N. Bs (N) is the sth binomial moment of X (N) . If we know the bi
nomial moments of X (N) , then the moments of E{ [X (N) ]' } (see, for example, K. Jor
dan [10, Ch. II, sec. 17])  are given by 

s 
E{ [X (N) ]' }  = L S* (s , k)k ! Bk (N) 

k=l  
s 

= L S* (s , k)k! (N - k) ! rd N !  (8) 
k=l  

for s = 1 ,  2 ,  . . .  , N where S* (s ,  k) are Stirling's  numbers of the second kind. First, 
we will compute the mean and variance of X (N) using this formula. The number of 
ways of placing one rook in a restricted position is equal to the number of restricted 
positions, so r1 = mk2 , and 

J-L = rJ / (mk) = k .  

To find the variance, we need r2 . Observe that there are m ways of  placing two rooks in 
the same block, and (�) ways of placing one rook in each of two blocks, so the second 
rook number, 

(9) 

From equations (8) and (9) we have 

To complete the proof, we use an idea from statistics .  Recall that a bivariate con
tingency table is a table in which cell entries represent frequencies (or counts) corre
sponding to two variables .  In our case, columns represent diners categorized by what 
they ordered, and rows represent diners categorized by what they are served. The data 
from the chessboard at the beginning of this note would be displayed in a contingency 
table as shown below. 

More generally, the dinner-diner assignments can be displayed on an m x m bivari
ate contingency table with fixed marginals (that is, fixed row and column totals). The 
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TABLE  2 :  Conti ngency tab le  of ass ignment of d i n ners to d i ners 

Pasta Chicken Prime Rib Filet of Sole Total 

Pasta 0 1 0 0 1 
Chicken 1 0 3 4 8 

Prime Rib 0 3 0 3 6 
Filet of Sole 0 4 3 0 7 

Total 1 8 6 7 22 

row and column totals are fixed because we know how many guests ordered each en
tree, and we know how many there are of each entree. When we have m entrees each 
ordered by k diners, the row totals and column totals are k for each of m rows and each 
of m columns . The probability of having n;. j diners who ordered entree i but receive 
entree j ,  for i = 1 ,  . . .  , m, j = 1 ,  . . .  , m is 

(mk) ! fl. j n; ,/ 
( 1 0) 

the same as the probability of having entries of n; , j , for i = 1 ,  . . .  , m ,  j = 1 ,  . . .  , m ,  in 
a contingency table with fixed row and column totals equal to the number of diners who 
ordered each entree. The distribution of the cell entries is known to be asymptotically 
jointly normal when row and column totals are fixed proportions of the grand total, N,  
and N --+ oo ;  see, for example, Roy and Mitra [20] for a discussion of  the asymptotic 
distribution of cell entries in contingency tables with various combinations of fixed 
row and column sums, or Lancaster [12, 13] . Because the distribution of cell entries 
in a contingency table is jointly normally distributed in the limit as the grand total 
N --+ oo, and the row and column totals remain a fixed proportion of N, the sum of 
the entries in the diagonal cells will also be normally distributed. The sum of the entries 
in the diagonal cells is the number of matches of dinners to diners . This completes the 
proof. 

The asymptotic behavior of cell entries in a contingency table is not restricted to 
tables with equal row and column totals, so our proof extends to the more general 
dinner-diner distribution where there are different numbers of guests ordering each 
entree. So long as the proportion of guests ordering each entree remains fixed as total 
orders tends to infinity, we have the following result: 

THEOREM 4. The random variable 

Y (N) = 
X (N) - fL 

a 

has asymptotically normal distribution as k --+ oo with parameters (0, 1 ), where 
X (N) is a random variable representing the number of matches for the dinner prob
lem with a choice of m entrees with kn; diners having selected the i th entree, and 
N = k L�=l n ; .  The expectation of X (N) is 

( 1 1 )  

and the variance is 
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The idea of extending the contingency table approach to more general card
matching problems is applied by David and Barton [5] , and by Anderson [1]  who 
prove more general results . 

The data in Tables 1 and 2 for the Ohio NExT dinner problem are related as follows :  
The probability for the assignment shown in Table 1 ,  the chessboard, was 1 /22 ! � 
8.9 x 10-22 , but the probability of the assignment shown in the contingency table is 
greater and is given by the product of factorials of the row and column totals divided 
by the product of the factorials of the cell entries and the grand total factorial, (this is 
formula ( 1 0) generalized to unequal row and column totals) :  

1 !2 6 !2 7 e 8 !2 

22 ! 3 !4 1 ,2 4 !2 
= 350/ 1 37 1 8 133 � 2.55 x 1 0-5 . 

The probability is greater because there are 28,677,390,336,000,000 different chess
board arrangements of nonattacking rooks that result in this particular contingency 
table . 

The expected number of entries in row i ,  column j , is  

where n; is the fixed sum for row i and n j is the fixed sum for column j.  The expected 
number of matches of dinners to diners is the sum of the expectations of the diagonal 
cells .  In the Ohio NExT dinner example, we have ( 1 2 + 82 + 62 + 72) /22 = 1 50/22 � 
6.82. More generally, the expected number of matches is given in theorem 4 :  

'\'m 2 
L...i=I ni 

fJ., = '\'m ' 
L...i=l ni 

(substitute 1 for the scaling factor k in equation ( 1 1 )  from theorem 4). In the dinner
diner problem, we have considered only the case where the sum of the i th row is equal 
to the sum of the i th column. This restriction is not necessary. See [1]  and [5] for the 
more general case. 

Examples 

In the examples that follow reference is made where applicable to The on-line encyclo
pedia of integer sequences (EIS) [23] . This is an amazing research tool that provides 
easy access to an extensive database of integer sequences . Sequences can be looked 
up in this reference by entering at least three consecutive terms . The citation provides 
more terms of the sequence, a name for the sequence and often references, a gener
ating function, a formula for the nth term, hyperlinks, computer code for generating 
the sequence and more. Many sequences appear in multiple contexts .  The EIS helps 
researchers to make those connections .  (In what follows,  A followed by 6 digits, e.g. 
A059056, refers to EIS sequence numbers .)  

Distributions for some particular values for m and k are well studied. When k = 1 ,  
we have Montmort 's [14] hat-matching problem with solution 

( l .m)  = 
(m) _!__ � ( - l ) i . pi .

. , �  . ,  1 1 .  i=O l .  

When k = 2, we have what Penrice [17] (also see Sequences A059056, A059057 in 
the EIS [23]) has described as the married version of the Christmas gift problem where 
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adult children and their spouses draw names to exchange gifts for Christmas.  Any 
drawing in which a person draws his own name or his spouse's is invalid. Penrice 
showed that this probability tends to e-2 as the number of married couples ,  m --+ oo .  
More generally, he showed that for fixed k, 

This is a particular case of Knudsen and Skau [11]  and David and Barton's  [5] more 
general results . Earlier work on this problem that suggests these results was done by 
Riordan [19] . 

For general k, when m = 2, we can write an explicit formula for the matching 
probabilities. Consider the probability of zero matches .  There are ( 2k)! permutations 
of which (k! )2 are permutations that do not result in a match, so 

The formula for arbitrary i is 

(2 ,k) - (k! )2 
Po 

-
( 2k)! 

(k , 2) - i /2 (k . ) { ( k ) 2 1 2 
P; - (2k) !  • 

0 
k even 
k odd, 

since for there to be i matches, k - i /2 of the k guests who ordered chicken must have 
been switched with k - i /2 of the k guests who ordered prime rib and the k guests 
who are served prime rib and the k guests who are served chicken may be in any of 
k! orders. The mode of the probability distribution is i = Lk/2J , and using Stirling's  
formula we can show 

(2 ,k) 2 
Plk/21 "' � · 

This distribution is a discrete approximation of a normal distribution (if one considers 
only even numbers of matches) with mean f.L = k and variance a2 = k2/ ( 2k- 1 ) .  
See the graph below, which compares the dinner-diner matching probabilities to the 
normal distribution with the same mean and variance, and to the Poisson distribution 
with the same mean. The numerators of these probabilities appear in [23] as Sequences 
A059064 and A059065 . 

For m = 3 ,  the probability of no matches is given by 

(3 .k) _ (k! ) 3 L�=O e) 3 
Po -

(3k) ! 

If a random permutation has no matches,  then for some j = 0, . . .  , k, j of the guests 
who ordered chicken will be served prime rib and k - j will be served filet of sole. This 
means that k - j of the guests who ordered filet of sole will be served prime rib and j 
will be served chicken and the remaining chicken and filet of sole orders will be served 

to those who ordered prime rib. There are e) 3 ways of making such selections .  Each 

of the three partitions may be in any of k! orders . So there are (k! ) 3 L�=O e) 3 possible 

permutations that correspond to no matches .  The numbers L�=O e) 3 are called Frane! 
numbers ; see Cusick [4] and Sequence A000 172 in the EIS [23] . Other sequences 
related to m = 3 are Sequence A059066 and A059067 . 
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Figure 2 D i n ner-d i ner match ing  probab i l i t ies, choice of 2 entrees 

Sequences A059056-A059074, A008290, A0003 1 6, A000459, and A000166 are 
all related to these dinner-diner matching probabilities. More details on how they are 
computed are provided in the On-line Encyclopedia of Integer Sequences [23] .  Maple 
code for generating the numerators of these probabilities is also provided there. 

Conclusion : Matching probabilities for two standard decks of cards 

We close by illustrating graphically that the normal approximation is superior to the 
Poisson if we let the number of diners increase while holding the number of choices of 
entrees constant, although the Poisson approximation is better if we hold the number 
of diners choosing each entree constant, but let the number of choices increase. 

Instead of thinking of dinners and diners, consider a standard deck of playing cards. 
The graphs below show that, as expected, the Poisson distribution provides a better 
approximation for the rank-matching problem, but the normal distribution provides a 
better approximation for the suit-matching problem. For rank matching, the variance 
is about 94% of the mean, but for suit matching, it is only 76%. (The variance ap-
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Figure 3 Standard deck match ing  su i t  



VOL.  76, NO. 2 ,  APRI L 2003 1 1 7  
proximation using formula (6) from the Remark gives 92% and 75%, respectively, 
( 1 - 1 / (mk)) of the true variance.) 
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Figure 4 Standard deck match i ng rank  

We leave the following as exercises for the interested reader (J. A .  Greenwood [7] ) : 
1 .  Show that the third central moment of the dinner-diner matching distribution is :  

m - 2 Jmk - 1  
E ( [X (N)]3 ) = 

mk - 2 m - 1 ' 

for N = km as in theorem 3 and k ,  m > 1 .  Hence, 

lim E ( [X (N)]3 ) = 0, 
k->oo 

as  i s  required for the third moment of  a centered normal random variable. 

2 .  Show that the fourth central moment of the dinner-diner matching distribution is 
(when N = km as in theorem 3) :  

( 4) 3m2 (m - l )k3 + (m3 - 21m2 + 2 1 m )k2 + 6(4m - 3)k - m - 6 
E [X (N)] = , 

m2 (m - l )k3 - 5m (m - l )k2 + 6(m - l )k 

and hence, 

lim E ( [X (N)t) = 3 ,  k->oo 

as  is required for a random variable that is asymptotically standard normal . 
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How are teams in a tournament usually ranked? For most of the popular sports in the 
U.S . ,  the percentage of wins is all-important, and the team with the highest winning 
percentage earns first place. Although this system is here to stay (and for many reasons, 
such as its simplicity, this is desirable), all sports fans recognize a nagging flaw:  in a 
tournament that is not round-robin, so that each team plays only a subset of the others, 
a team with a weak schedule may have a considerable advantage over one facing strong 
opponents .  

The sports world offers many possible remedies .  Any reader of the sports section of 
USA Today is familiar with Jeff Sagarin. Sagarin' s  ratings, applied to numerous pro
fessional and collegiate sports, have enlightened fans since the mid- 1 980s and have 
officially guided both the NCAA basketball tournament selection committee and the 
college football Bowl Championship Series commission. It is clear that strength of 
schedule undoubtedly plays a role in this ranking scheme. For example, in his final 
ranking of NFL teams for the 2001 season, Sagarin [8] places Kansas City at 6- 1 0  
above Washington at 8-8.  According to Sagarin, Kansas City faced the 1 6th most diffi
cult schedule, whereas Washington opposed the 28th. Other ranking systems abound, 
including those by Richard Billingsley and Kenneth Massey, both employed by the 
Bowl Championship Series commission, and the time-honored Dunkel Index, which 
has been around since the 1 920s. 

The mathematical community has also tackled the problem, leaving a trail of re
search going back as far as Zermelo [14] . Driven by mathematical interest, as opposed 
to applicability, mathematicians tend to focus only on team performance and avoid 
building into their models factors such as home-field advantage, game location, recent 
team performance, and so on. The simplicity of this approach is preferred by many 
mathematicians, rather than the more complicated models used by sports professionals .  
Well-known authors in this genre are Keener [4] and Minton [5] . Keener uses his re
sults to cast doubt on Brigham Young University ' s  1 984 national football title, and 
Minton argues that Colorado should have stood alone in 1 990, the year the Buffaloes 
shared the championship with Georgia Tech.  For an introduction to this area of re
search, the reader should consult these articles as well as Stab [10] , which is an excel
lent survey of some previous advances in the area. 

In the spirit of Barbeau [1 ] ,  Keener [4] , and Saaty [7] , at the heart of whose ranking 
schemes is a limiting process, and Minton [5] , who stresses point spread over point 
ratio, I wish to share with you my own system. It may not be applicable to the world of 

1 1 9  
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sports, but it does seem simple and natural. In my opinion, the scheme and its underly
ing theory are among the easiest to grasp in the literature. I hope therefore to provide a 
window into this mathematically intriguing subject for undergraduate students, espe
cially those of linear algebra, as well as for anyone curious about by these questions. 
I am deeply indebted to the works of the authors mentioned above, especially Minton, 
with whom, although my approach is different, my rankings agree. 

An illustrative example For the sake of clarity and to avoid tedious notation, I will 
limit my discussion to a simple example and leave the general formulation to the in
terested reader. Consider the following tournament of four teams in which each team 
has played two games. 

Opponents Result 
A vs.  B 5- 1 0  
A vs.  D 57-45 
B vs.  C 10-7 
C vs .  D 3- 1 0 

B is 2-0, A is 1 - 1 ,  D is 1 - 1 ,  and C is 0-2. In other words, B 's winning percentage 
is 1 .00, A 's and D ' s  are each 0 .50, and C 's is 0.00. The traditional win/loss method 
of ranking places B in first place followed by A and D in second place and C in last 
place. Note that in the calculation of the winning percentages it is  as if each team has 
been given 1 point for each win and 0 points for each loss .  We have, however, ignored 
the possibility of a tie. The first revision, then, that we will suggest is that teams be 
given a score of 1 for each win, a score of 0 for each tie, and a score of - 1 for each 
loss. Each team's  rating would then be determined by the sum of its scores divided by 
the number of games played (2 in the case of our example) . B 's rating is still 1 .00, but 
A 's and D ' s  are each now 0.00, and C ' s  is - 1 .00. 

With this amendment in place, we can now define the dominance of one team over 
another. Because B defeated A ,  we will say that B ' s  dominance over A is 1 .  Con
versely, A 's dominance over B will be said to be - 1.  The average dominance of A 
over its opponents is its rating, 0 .00, and so forth. There is still a flaw in this approach, 
however, since there is now an artificial limitation on one team's dominance over an
other. In our example, B defeats A by 5 points, but defeats C by only 3 points . Thus 
B 's dominance of 1 over each team reflects imperfectly what has really happened. We 
will therefore make another change to our proposed ranking scheme by redefining one 
team's dominance over another to be its score in the game played minus its opponents 
score. B ' s  dominance over A is then 5, whereas A 's dominance over B is -5 .  We list 
each team's  average dominance over the field of its competitors . 

Team 
A 
B 
c 
D 

Average Dominance 
3 .5  
4 

-5 
- 2.5 

These new ratings are perhaps more descriptive, but they still don' t  factor in strength 
of schedule. Before tackling this problem, we need to make yet one more minor, but 
important, modification of our proposed ranking scheme. We will consider each team 
as having played one game against itself. Each team will receive a score of zero, of 
course, for this game. Though this requirement seems strange at first, the reason for 
it will be made apparent. Under this latest revision, our modified initial standings are 
listed in the table below. 
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Team 
A 
B 
c 
D 

Rating 
7/3 = 2 .33 
8/3 = 2.67 

- 10/3 = -3 .33  
-5/3 = - 1 .67 

1 2 1  

The fundamental idea Consider team A .  It does not play C in the tournament, so 
we do not have any direct way of comparing the two teams . However, A plays D, 
and D plays C ,  so there is a path from A to C .  A defeats D by 1 2  points, and D 
defeats C by 7 points . The fundamental idea is to consider an imaginary game to have 
been played between A and C where A defeats C by 1 2  + 7 = 19  points . C could 
be called a second-generation opponent of A .  Let us enumerate all second-generation 
games "played" by A by constructing a tree where each first-generation opponent of A 
emanates from A,  and each second-generation opponent of A emanates from the first
generation opponent it plays . The appropriate dominance is assigned to each edge. 

We are now considering A to have played nine games instead of three, and the scores 
of the games are obtained by adding down each branch of the tree as in FIGURE 1 .  The 
second-generation dominance of A is then determined by the average of these scores. 
We list the average second-generation dominances of all our teams . 

Team 
A 
B 
c 
D 

Average Second Generation Dominance 
3 .44 
3 .22 

-4. 11 
-2.56 

Note that A has moved into first place. Strength of schedule now plays a role in rank
ing teams since the ranking also depends on the performance of their first-generation 
opponents.  Though a team might not have a stellar first-generational record, teams with 
difficult schedules will reap the benefits of their opponents '  success. One interesting 
point is that some of these nine games are identical to an original real game. For ex-

ample, the tree in FIGURE 1 lists the second-generation game A � A � B ,  which 

is identical to the first-generation game A � B .  This is one of the reasons that we 
require a team to be an opponent of itself. The original real comparisons are not lost. 

0 1 2  

0 1 2  5 3 - 1 2  0 

A D A c A D 

Q Q Q 
Figure 1 The average dom inance of A over its second-generat ion opponents = 3 1 /9 = 
3 .44 

This process can be continued through any number of generations, and our intuition 
suggests that as the number of generations increases, our ranking becomes more accu
rate. Let rn (A) denote the average n-generation dominance of A or, equivalently, A 's 
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n-generation rating. A natural and important question to ask at this stage i s  whether 
or not limn-+oo rn (A) exists . This limit, if it exists, is the ultimate rating we intend to 
assign to A .  Here is where the mathematics becomes interesting and, I feel, surprising. 

The mathematical formulation We illustrate the structure of our tournament with 
the graph in FIGURE 2 (note the edges from each team to itself) . 

Figure 2 

The incidence matrix for this graph is a 4 x 4 matrix with a row and column for each 
node. Each entry is a 0 or a 1 , depending on whether or not the node for the entry's  
row is connected to the node for the entry' s  column. Our incidence matrix (where A 
corresponds to the first row and column, B to the second, etc.) is 

[ 

1 1 0 1 ] 
1 1 1 0 M = 
0 1 1 1 . 

1 0 1 1 

Now consider the square of the incidence matrix, M2 • It turns out that the (i , j )  entry 
of M2 

is the number of distinct paths of length 2 between the node corresponding to 
row i and the node corresponding to column j .  (The reader should think this through.) 

[ 

3 2 2 2 ] 

M2 
_ 

2 3 2 2 
- 2 2 3 2 

2 2 2 3 

Compare the first row of M2 
to FIGURE 1 . The entries in the first row of M2 

indicate 
that A appears as a second-generation opponent of itself three times, whereas the other 
teams appear twice. This is exactly what F IGURE 1 shows .  Other powers of M behave 
the same way: the (i ,  j) entry of Mn is the number of times the team corresponding to 
column j appears as an n-generation opponent of the team corresponding to row i .  

Now define the vector 

The coordinates of S are the net points scored by the teams in the tournament (for 
instance, the net number of points A scored is 7) . Then the coordinates of the vector 

[ 

1 0 0 0 

] [ 

7 

] [ 

2.33  

] 
1 0 1 0 1 0 0 8 2.67 
3 M . S = 3 0 0 1 0 . - 10 

= 
- 3 . 33 

0 0 0 1 -5 - 1 .67 

are the first-generation ratings of our teams. 
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Using FIGURE 1, we can compute the second-generation ratings also. Observe that 

to calculate the second-generation rating of A ,  the second-generation dominances have 
to be added in once, whereas the first-generation dominances each have to be added 
in three times. The first coordinate of 3M0 · S will give us the latter sum, and the first 
coordinate of M 1 • S will give us the former. (The reader should pause to think this 
through. )  Thus, the coordinates of the vector 

1 o 1 1 o 1 1 
32 ( 3M · S + M · S) = "3M · S + 

32 M · S 

yield the second-generation ratings for our teams. Likewise, the vector yielding the 
n-generation ratings has the formula 

n 1 (M) j- 1 I: - - · S . j= l 3 3 

Does the limiting vector 

( n 1 (M) j- 1 ) 
lim I: - - · S 
n-+oo . 3 3 j =l 

necessarily exist? 

The limit To evaluate this limit (and show that it exists), we use an eigenvector de
composition of M /3 .  The eigenvalues of M /3 are 1, -1/3 ,  and 1/3 occurring with 
multiplicity 2. Because M is symmetric, we may choose a set of four linearly indepen
dent orthonormal eigenvectors corresponding to these eigenvalues . We may choose 
eigenvectors 

� 
Vo = 

[ 1/2, 

] 

[ -1/v'l, ] [ 0, ] 
1/2, � 

-
0, � 

-
-1/v'l, 

1/2, ' V J - 1/v'l, ' v2 - 0, 
1/2 0 1/v'l 

and 

[ -1/2, 

] 

1/2, 
-1/2, 

1/2 

corresponding to eigenvalues 1, 1/3 ,  1/3 ,  and -1/3 , respectively. 
Since the eigenvectors form a basis, we may now express S as a linear combina

tion of these eigenvectors . The coefficient of each eigenvector may be obtained by 
computing its scalar product with S :  

S = [ �SO ] = (S · >i,)V:, + (S · J, )V, + (S . J,)i;  + (S . ii,)v;  

[ 1/2, 
] 

[ -1/v'l, ] [ 0, ] [ -1/2, 

] = 0 
1/2, - _!2_ 0, - � -1/v'l, 

+ 3 
1/2,  

1/2, J2 1JJ2, J2 0, -1/2, 
1/2 0 1/v'l 1/2 

[ � �:
2 
] 

+ 
[ 13j2 ] 

+ 
[ :;:J: 

] 

. 

0 -13/2 3/2 
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Note that the three vectors above are still eigenvectors o f  M j3 with eigenvalues 
1 /3 ,  1 /3 ,  and - 1 /3 ,  respectively. Let us call these new eigenvectors � . s2 , and s3 . In 
fact, for any positive integer j they are also eigenvectors of (M j3) j with associated 
eigenvalues ( 1  j3) j , ( 1  j3)j and ( - 1  j3) j , respectively. Thus we can write 

n 1 (M ) j - 1 1 n- 1 (M ) j 
lim '""' - - · S = - lim '""' - · (s1 + S2 + 5;) 
n->oo � 3 3 3 n---+oo � 3 j = l  ] =0 

1 00 ( 1 ) j � I 00 ( 1 ) j � 1 00 ( 1 ) j � 
= - L - St + - L - S) + - L -- S3 3 j =O 3 3 j=O 3 3 j=O 3 

1 ( 1 ) � 1 ( I ) � I ( 1 ) � 
= 3 1 - 1 /3 

51 + 3 I - 1 /3 
52 + 3 I + 1 /3 

53 

[ 3 . 875 ] 
3.625 

= 
-4.625 

. 

-2. 875 

The keys The reader can now easily see that the keys to establishing the limit are : 

1 .  M j3 has an eigenvalue of 1 with a corresponding eigenvector having identical co
ordinates ; this is because the rows of M j3 add to 1 .  In other words, the sum of each 
row in the incidence matrix is the number of games played by each team. 

2. The coordinates of S add to zero, which is necessarily true of any vector obtained 
by our rankings, since the coordinates are the net number of points scored by the 
teams in a tournament. This fact and the key mentioned above guarantee that the 
coefficient of the eigenvector with eigenvalue I in the decomposition of S will be 
zero. 

3 .  The absolute value of each of the other eigenvalues is strictly less than 1 .  This 
guarantees that the infinite series above converge. Why is this true of the other 
eigenvalues? This follows because M /3 is a Markov matrix: a matrix with non
negative entries and each column adding to 1 .  The eigenvalues of Markov matrices 
are very special . One eigenvalue is equal to I, and the absolute value of each of 
the other eigenvalues is :s 1 . This inequality becomes strict if any power of the 
Markov matrix has all positive entries (see Strang [11]  for more on Markov matri
ces). Because our tournament graph is connected (it wouldn' t  really make sense to 
consider a tournament for which this is not the case) , given any team, every other 
team must appear as its opponent in some generation. Once a team appears as an 
opponent in some generation, it will appear in every generation after that because 
it is an opponent of itself. Consequently, some power of M j3 will have all positive 
entries . This is the primary reason we make this requirement at the outset. 

Concluding remarks When I first worked on this problem, the notion of the teams 
opposing themselves had not occurred to me. When I used Mathematica to run the 
ranking algorithm on several tournaments , I did not always notice limiting behavior. I 
understand the mathematical necessity now for having teams oppose themselves ,  but 
a further explanation still eludes me. 
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The rankings produced by the scheme described in this note are identical to those 

produced by Minton's  method [5] , which requires the solution of a system of linear 
equations ;  in ours we calculate eigenvalues and eigenvectors . Both tasks could be
come difficult if the tournament is large. Ours , however, has the advantage of offering 
approximate rankings. One has just to run the algorithm out to a specified generation. 
This is not as accurate as calculating the limits , but the results would be perhaps fairer 
than those given by the win/loss ranking system. 

What if the tournament is unbalanced in the sense that the teams do not all play the 
same number of games? By allowing the convention that teams may play any number 
of games against themselves, the number of games played can be made equal . For 
instance, suppose the tournament is just two games, A against B ,  and A against C .  
In  this case, A has three opponents (B , C ,  and itself) ,  whereas each of  the others has 
two. To even matters, B and C can be required to play two games against themselves 
instead of one. 

Some readers may object to the diminished significance of a win and the heightened 
importance of the score in our scheme. I admit that winning is part of the excitement of 
a game. Allotting a certain number of points to the victor just for prevailing, however, 
may preserve the value of a win. If many points are awarded for a victory, winning 
will drive the ranking of the teams. 

Every point scored, though, is potentially important in the end. This is why teams, 
even with victory assured, must press on in each game to score as many points as 
possible. One may object to this feature of our system since it appears to advocate 
the humiliation of the loser. When only the win counts , which is the case in most 
tournaments today, a team losing by a large margin is embarrassed, because those 
extra points do not count. In our system, every point gained or lost could potentially 
make or break a team in the end. Even if the winner is decided early on, both teams 
must play as hard as possible for the entire game. A team might just qualify for the 
playoffs because of a heroic goal-line stand preventing a touchdown in a game it lost 
by 50 points . I see this as a positive aspect in that a game is never over or meaningless 
before its conclusion. 

Finally, I would like to comment on the additive nature of the dominances we use. 
Since, in our example, A defeats D by a score of 57-45 , we say that A is 12 points 
better than D. This is the additive approach, used also by Minton. A is then considered 
to be (57 - 45) + ( 1 0 - 3) = 1 9  points better than C, and so on. Other authors such as 
Barbeau [1 ] ,  Keener [4] , and Saaty [7] use a multiplicative approach; in such a ranking 
system, A is considered to be 57 j 45 = 1 .27 times better than D .  A would then be 
(57 /45) · ( 1 0/3) = 4.22 times better than C .  For contests in which each team plays 
both offense and defense, I much prefer the additive approach. In our tournament, 
although the scores of the respective games appear to be very different, the additive 
approach evaluates the strength of A against D ( 1 2  points) similarly to the way it 
evaluates the strength of D against C (7 points) .  To me this is reasonable. The game 
between A and D may be high scoring because they both have powerful offenses and 
weak defenses . On the other hand, the game between D and C may be low scoring 
because C is strong defensively and weak offensively. It seems unfair to allow the 
actual number of points scored to play a major role in comparing two teams. In the 
multiplicative approach, A is rated as being just 1 .27 times better than D, but D is 
rated as being significantly better than C (3 .33 times). 

For teachers of introductory linear algebra and their students, I think what we've 
described is an interesting problem that highlights some of the topics encountered 
towards the end of the course. I hope that you find the time spent on it as rewarding as 
I have and that it enriches your enthusiasm for the subject. 
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The volume-area-derivative relationship dV  jdr = A for a ball of radius r is a rather 
striking one when one first comes across it. Accordingly, it is natural to consider 
generalizations, as Emert and Nelson did in a Note in this MAGAZINE [1] , first 
for n-dimensional spheres, and then for n -dimensional polyhedra that circumscribe 
n-dimensional spheres. When the circumscription fails, they suggest saving the re
lationship by pushing out the faces of the polyhedron a distance of E ,  while noting 
that this does not produce a family of similar objects . We introduce an alternative 
parameter, called h because the harmonic mean plays a role . This parameter indexes 
a family of similar objects and differentiating with respect to h rescues the volume-
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area-derivative relationship, which, in the vernacular, might whimsically be rephrased 
as "deriving something superficial from something that has depth." 

Review To understand the essentials of the relationship, consider a ball of radius r .  If 
one extends r to r + dr,  say, by painting the ball with a thickness dr , then, neglecting 
the higher order powers of dr , the increase in volume will be the area A of the ball 
times dr : d V  = A  dr . Expressing the volume V as a function of r gives the celebrated 
formula d V  fdr = A . 

It is certainly possible to express the volume as a function of other parameters .  If 
instead one expresses V as a function of, say, the half-radius r' = r /2, then dr = 
2dr' and d V  fdr' = 2A.  That is ,  extending the radius by dr corresponds to painting 2 
coats of thickness dr' (FIGURE 1 , left) . Similarly, expressing V as a function of the 
double-radius r" = 2r , means d V  fdr" = A /2. Because the possible parameters form 
a continuum, one can derive any multiple of A one likes. 

dr r I t · · ·  2r' 2dr' . , dr r , . 2r' 2dr' · · · · · I I dr r r" I I  · · · · • · · 

dV = A dr dV  = A dr dV  > A dr 
dV = A 2dr' dV = A 2dr' dV < A dr" 

Figure 1 Here r = 2 r' = -! r", so dr = 2d r' = -! dr" 

dr" · · t · 1 

If one can inscribe a sphere of radius r in a polyhedron, the same conclusions result 
for the volume and area of the polyhedron, since extending r to r + dr means adding 
a thickness dr to each face of the polyhedron (FIGURE 1 , middle) . 

If one can' t  inscribe a sphere of radius r in a polyhedron, meaning at least one face 
is farther than r from the sphere's  center, say r" > r ,  then as r is increased to r + dr,  
one adds a thickness dr" greater than dr to this face in order to get a polyhedron 
similar to the original one and d V  fdr > A ,  while d V  fdr" < A (FIGURE 1 , right) . 

These results for polyhedra, generalized to n-dimensional polyhedra, also called 
polytopes (with V always the n-dimensional content and A the (n - I ) -dimensional 
content), were presented in a more formal manner by authors Emert and Nelson in this 
MAGAZINE, after which they said the following [1 ,  p. 369] : 

In general it is not possible to pick an "inner radius r"  so that d V  fdr = A .  
But i s  there a different variable that can replace r to achieve this "volume-area" 
relationship? 

Their answer to this question is to pick an interior point from which to push out 
each face of the polytope a distance E ,  so that V and A ,  as functions of E ,  result in 
d V  /dE = A .  The members of the family parameterized by E ,  however, are not similar, 
and different interior points result in different families. Further, E is considered as be
ing small, as opposed to r, which can be any positive number. These characteristics of 
E can be avoided. 
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An alternative There i s  a parameter that produces similar family members and 
which seems to be the natural one to replace r when the polytope fails to circum
scribe a sphere. As an instructive example, consider a family of similar 3-dimensional 
solid boxes parameterized by s, and let the distances from the centerpoint to the six 
faces be as , as , bs , bs , cs , cs . Then 

V = 2as 2bs 2cs = 8abcs3 , and 

A =  2(2as 2bs + 2as 2cs + 2bs 2cs ) = 8 (ab + ac + bc)s2 • 

To determine h ,  it must be some multiple of s ,  so let h = ks .  Then 

d V  24abc 2 - = -- h 
dh k3 

' A =  
8(ab + bc + ac)

h2 
k2 0 

Setting d V  ldh = A, we find that k = 3abcl (ab + ac + be) , so 

3abc 6 
h =  s = �---,----:,---.,----,-----=-

ab + ac + be 1 1 1 1 1 1 · 
- + - + - + - + - + 
as as bs bs cs cs 

Thus h is the harmonic mean of the centerpoint-to-face distances, and this result ex
tends to the general case of n-dimensional boxes. This suggests that h ,  besides standing 
for height, might also stand for harmonic. 

To be more general (working now in dimension n), let A; be the area of the poly
tope's i th face so that L A; = A, the total area. Also, let h; be the distance from an 
interior point of the polytope to this face so V; = h; A ; /  n is the volume of the pyramid 
built on the i th face and L V; = V, the total volume. For hs and hg the shortest and 
greatest of the h ; , with hs < h g , it follows that d VIdhs > A , as considered above and 
depicted in FIGURE 1 .  Using the same kind of reasoning, it follows that d V  ldhg < A .  
There i s  accordingly some mean distance h between hs and hg such that d V  ldh = A . 

More generally, for a family of similar polytopes, the volumes will be proportional 
to hn , so 

d V  n 1 n V  
A = - =  Cnh - = - ,  

dh h 

n V  L: h · A -
from which h = - = 

L 
' ' . 

A A; 

Thus the mean distance h is the weighted mean of the h ;  with the areas A;  being the 
weights . A generalization of the box example occurs when an interior point exists such 
that all V; are equal. Then V; = VIm for a polytope with m faces and h is a harmonic 
mean: 

· n V  m m m m 
h = - = = = = 0 

A L: A; J (n VIm) L: A; J (n V; ) L A; I (h ; A; ) L I l h; 

The term n V 1 A shows, however, that h is independent of which interior point was 
used. 

In fact, the result h = n V 1 A suddenly opens up the possibility for a sweep
ing generalization, for it applies not only to families of similar polytopes, but to 
any family of similar objects which have some n-dimensional content V and some 
(n - I )-dimensional content A .  Phrased in this way, the problem of how content 
is determined is sidestepped. That different methods can give different results (see 
Gelbaum and Olmsted [2, p. 1 50] ;  Schneider [3] treats more esoteric aspects of the 
subject) is not a problem, since whatever methods provide values for V and A as 
functions of some length parameter s ,  these values will be proportional to sn and sn- 1 
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because of similarity. The parameter h for a given object can be thought of as the 
radius of a sphere that has the same ratio of V to A as the object. It will henceforth be 
referred to as the object's harmonic parameter. 

To check how h = n VI A works on some examples, consider the three simple cases 
of FIGURE 1 , plus that of a right circular cone. 

Circles : radius r ,  h = 2(nr2) 1 (2nr) = r .  
Squares : side 2r , h = 2(2r )2 1 4(2r) = r .  

Rectangles: length 3 r ,  width 2r , h = 2(3r2r)l2(3r + 2r) = 6rl5 .  
Cones : radius r ,  height ar ,  

If  you can assign a volume and an area to  your coffee cup, i t  will have a value for 
its harmonic parameter h .  The magnitude of h is somewhat indicative of function. For 
a lung and a balloon of the same volume, the lung will have a much smaller h than 
the balloon, and the same holds in comparing a brain and a stomach. Returning to 
the vernacular, one might say that increasing superficiality provides for higher order 
functioning. 

As might be expected, the generalization invoked by the idea of the harmonic pa
rameter can be extended to higher derivatives and also to multi-parameter objects . It 
must be confessed that the authors found it quite entertaining to do so, for the har
monic mean kept showing up in unexpected ways, which they believe readers might 
now enjoy discovering by themselves. 
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Probabilistic reasoning goes a long way in many popular board games.  Abbott and 
Richey [1] and Ash and Bishop [2] identify the most profitable properties in Monopoly, 
and Tan [3] derives battle strategies for RISK. In RISK, the stochastic progress of 
a battle between two players over any of the 42 countries can be described using a 
Markov chain. Theory of Markov chains can be applied to address questions about the 
probabilities of victory and expected losses in battle. 
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Tan addresses two interesting questions:  

If you attack a territory with your armies, what is the probability that you will 
capture this territory? If you engage in a war, how many armies should you 
expect to lose depending on the number of armies your opponent has on that 
territory? [3, p. 349] 

A mistaken assumption of independence leads to a slight misspecification of the tran
sition probability matrix for the system, which leads to incorrect answers to these 
questions .  Correct specification is accomplished here using enumerative techniques . 
The answers to the questions are updated and recommended strategies are revised and 
expanded. Results and findings are presented along with those from Tan's article for 
comparison. 

TABLE  1 :  An examp le  of a battle 

Roll # No. of armies No. of dice rolled 

attacker defender attacker defender 

1 4 3 3 2 
2 3 2 3 2 
3 1 2 2 
4 1 
5 0 

Outcome of the dice 

attacker defender 

5, 4, 3 6, 3 
5, 5 , 3 5, 5 

6 4 , 3 
5 6 

No. of losses 

attacker defender 

1 l 
2 0 
0 l 

0 

The Markov chain The object for a player in RISK is to conquer the world by oc
cupying all 42 countries, thereby destroying all armies of the opponents. The rules 
of RISK are straightforward and many readers may need no review. Newcomers are 
referred to Tan's article where a clear and concise presentation can be found. Tan's  
Table 1 is reproduced here for convenience. I t  shows the progress of  a typical battle 
over a country, with the defender prevailing after five rolls .  This table also serves as a 
reminder of the number of dice rolled in various situations-never more than three for 
the attacker, and never more than two for the defender. 

Following Tan's  notation, let A denote the number of attacking armies and D the 
number of defending armies at the beginning of a battle. The state of the battle at any 
time can be characterized by the number of attacking and defending armies remaining. 
Let Xn = (an , dn ) be the state of the battle after the nth roll of the dice, where an and 
dn denote the number of attacking and defending armies remaining. The initial state is 
X0 = (A , D) .  The probability that the system goes from one state at tum n to another 
state at tum n + 1 , given the history before tum n, depends only on (an , dn ) ,  so that 
{Xn : n = 0, 1 , 2, . . .  } forms a Markov chain: 

Pr [Xn+ l  = (an+ I · dn+ I ) I Xn , Xn- 1 • . . .  , X] , xo] = Pr [Xn+ l  = (an+ I , dn+l ) I Xn ] 
The AD states where both a and d are positive are transient. The D + A states where 
either a = 0 or d = 0 are absorbing. Let the AD + (D + A) possible states be ordered 
so that the AD transient states are followed by the D + A absorbing states. Let the 
transient states be ordered 

{ 0 ,  1 ) ,  ( 1 , 2) , . . . , ( 1 , D) , (2, 1 ) ,  (2, 2) , . . .  , (2, D) ,  . . .  , (A , D) }  
and the absorbing states 

{ (0, 1 ) ,  (0 , 2) ,  . . .  , (0 , D) ,  ( 1 , 0) ,  (2, 0) ,  . . .  , (A , 0) } .  
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Under this ordering, the transition probability matrix takes the simple form 

p = [ � � l 
where the (AD) x (A D) matrix Q contains the probabilities of going from one tran
sient state to another, and the (AD) x (D + A) matrix R contains the probabilities of 
going from a transient state into an absorbing state. 

The transition probability matrix, P It turns out that P contains only 14 distinct 
probabilities, having to do with how many dice are rolled and how many armies lost as 
a result. Let TCijk denote the probability that the defender loses k armies when rolling 
j dice against an attacker rolling i dice, as given in Table 2. To obtain the TCijb the 
joint probabilities associated with the best and second best roll from 2 or 3 six-sided 
dice need to be quantified. Let Y1 , Y2 , Y3 denote the unordered outcome for an attacker 
when rolling three dice and let W1 , W2 denote the unordered outcome for an attacker 
when rolling two dice. Let Z 1 , Z2 denote the unordered outcome for a defender rolling 
two dice. Then yl ' Y2 , y3 and WI ' w2 and z I ' z2 are random samples from the discrete 
uniform distribution on the integers 1 through 6 :  

Pr( Y·  = ) = { � for y = 1 ,  2, 3 ,  4, 5 ,  6 
1 Y 

0 else. 

When order is taken into account and denoted using superscripts, as in y ( l )  :=:: Y<2l :=:: 
y (3l ,  the ordered random variables are called order statistics. The joint distributions 
of order statistics needed for specification of TCijk can be obtained using straightfor
ward techniques of enumeration. When two dice are rolled, the joint distribution of 
(Z< 1 l ,  z<2l )  is 

{ 

-f6 for z ( l l  = z <2l 
Pr(z0 l = z< 1 l , z <2l = z<2l ) = f6 for zOl  > z<2l 

0 else, 

and the marginal distribution of the best roll zOl is obtained by summing the joint 
distribution over values of z <2l : 

Pr(z ( l )  = z< l l ) = 
{ 2z( l l  - 1 ., ( I ) 

1 5 6 
36 

10f Z = , 2 ,  3 ,  4 ,  , . 

When three dice are rolled, the pertinent distribution of the best two rolls is 

3y( 1 )_2 
21"6 
6y <2> -3 
21"6 

0 

for y < 1 l = y <2l 

for y Ol  > y <2l 
else, 

Pr( Y< 'l = J '" , y <2l = y l'' ) = { 

and the marginal distribution of the best roll is 

Pr( YOl = ( I ) ) = { 1 - 3 y< l l  + 3 (y < l l ) 2 
y 2 1 6  

for /1) = 1 ,  2 ,  3 ,  4 ,  5 ,  6. 

All of the probabilities are 0 for arguments that are not positive integers less than or 
equal to 6. The joint distribution of w < l )  and w<2l is the same as that for zOl and z<2l . 

The marginal distributions given in Tan ' s article can be obtained directly from these 
joint distributions. However, the marginal distributions alone are not sufficient to cor-
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reedy specify the probabilities of  all I4 possible outcomes.  In obtaining probabilities 
such as n32z and n3z0 ,  Tan's mistake is in assuming the independence of events such as 
yO) > zOl and y(Z) > z(2) . Consider 1TJ22 · Tan's calculation proceeds below: 

nm = Pr(Y0 l  > z0l n y(2) > z(2l ) 

= Pr(Y ( I ) > zOl ) Pr(Y (Z) > Z(2) ) 

= (0.47 1 ) (0 .5 5 I ) 

= 0 .259 .  

The correct probability can be written in terms of the joint distributions for ordered 
outcomes from one, two, or three dice. For example, 

5 Z ]  
= L L Pr(Y0) > Z 1 , y

(Z) > zz) Pr(Z0l = z 1 , z
(Z) = z2) 

ZJ =I Z2= l 
5 Z J  6 

= L:: L:: I:: 
2890 
7776 

= 0.372. 

Y l  L Pr(Y( I ) = y] , y (2) = Yz) Pr(Z( l ) = Z J , z(Z) = zz) 

Note that those events in this quadruple sum for which an argument with a subscript 
of 2 exceeds an argument with the same letter and subscript I have probability zero. 

The probabilities JT;jk that make up the transition probability matrix P can be 
obtained similarly using the joint distributions for y(l ) , y(Z) , for zOl , z(Z) , and for 
wo) , W(2) . The probabilities themselves ,  rounded to the nearest 0.00 1 ,  are listed in 
Table 2. 

TABLE  2 :  Probab i l i t ies mak ing u p  the trans i t ion p robab i l ity matr i x  

j Event Symbol Probability Tan's value 

I I Defender loses I 1T] ] ]  I 5j36 = 0.4 I7  0.4 1 7  
I I Attacker loses I 1TJ J O  2 1 /36 = 0.583 0.583 
1 2 Defender loses I 1TJ 2 1 55j2 I 6  = 0.255 0.254 
1 2 Attacker loses 1 1TJ 20 1 6 I j2 I 6  = 0.745 0.746 
2 I Defender loses 1 1Tz 1 1  I 25j2 I 6  = 0.579 0.578 
2 1 Attacker loses I 1Tz J O  9 1 /2 1 6  = 0.42 1 0.422 
2 2 Defender loses 2 1Tzzz 295/ 1 296 = 0.228 0. 152 
2 2 Each lose 1 1Tzz J 420j i296 = 0.324 0.475 
2 2 Attacker loses 2 1Tzzo 58 I j 1 296 = 0.448 0.373 
3 I Defender loses 1 1TJ ] ]  855 / 1 296 = 0.660 0.659 
3 I Attacker loses 1 1TJ JO 441 / 1296 = 0.340 0.34 1 
3 2 Defender loses 2 1TJ22 2890/7776 = 0.372 0.259 
3 2 Each lose I 1TJ21 26 1 1 /7776 = 0.336 0.504 
3 2 Attacker loses 2 1TJ20 2275/7776 = 0.293 0.237 
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The probability of winning a battle Given any initial state, the system will, with 
probability one, eventually make a transition to an absorbing state . For a transient 
state i ,  call h)n) the probability that the first (and final) visit to absorbing state j occurs 
on the nth turn: 

!i)n) = Pr(Xn = j, Xk f. j for k = 1 , . . .  , n - 1 I Xo = i ) .  

Let the A D x ( D  + A) matrix of these .first transition probabilities be denoted by F(n) . 
In order for the chain to begin at state i and enter state j at the nth turn, the first n - 1 
transitions must be among the transient states and the nth must be from a transient 
state to an absorbing state so that F(n) = Qn- l R .  The system proceeds for as many 
turns as are necessary to reach an absorbing state. The probability that the system 
goes from transient state i to absorbing state j is just the sum fij = L:::1 h)n) . The 
A D  x ( D + A) matrix of probabilities for all of these D + A absorbing states can be 
obtained from 

00 00 
F = L F(n) = L Qn-1 R = (/ - Q)- l R .  

n= l  n= l  
If  the system ends in  one of  the last A absorbing states then the attacker wins ; if  it 
ends in one of the first D absorbing states ,  the defender wins. Since the initial state of 
a battle is the i = A Dth state using the order established previously, the probability 
that the attacker wins is just the sum of the entries in the last (or A Dth) row of the 
submatrix of the last A columns of F :  

D+A 
Pr {Attacker wins I X0 = (A , D) ) = I: fAD,j 

j=D+l 
and 

D 
Pr {Defender wins I Xo = (A , D) ) = L fAD,j ·  

j= !  
The row sums of  F are unity, which confirms that the system always ends in  one of 
the D + A absorbing states. 

TABLE  3 :  Probabi l i ty that the attacker w ins  

1 2 3 4 5 6 7 8 9 10 

1 0.417 0. 106 0.027 0.007 0.002 0.000 0.000 0.000 0.000 0.000 
2 0.754 0.363 0.206 0.09 1 0.049 0.02 1 0.0 1 1 0.005 0.003 0.001  
3 0 .916 0.656 0.470 0.3 1 5  0.206 0. 1 34 0.084 0.054 0.033 0.02 1 
4 0.972 0.785 0.642 0.477 0.359 0.253 0. 1 8 1  0. 1 23 0.086 0.057 
5 0.990 0.890 0.769 0.638 0.506 0.397 0.297 0.224 0. 162 0. 1 1 8 
6 0.997 0.934 0.857 0.745 0.638 0.52 1  0.423 0.329 0.258 0. 193 
7 0.999 0.967 0.9 10  0.834 0.736 0.640 0.536 0.446 0.357 0.287 
8 1 .000 0.980 0.947 0.888 0.8 1 8  0.730 0.643 0.547 0.464 0.380 
9 1 .000 0.990 0.967 0.930 0.873 0.808 0.726 0.646 0.558 0.480 

10 1 .000 0.994 0.98 1 0.954 0.9 16  0.861 0.800 0.724 0.650 0.568 

The matrix F is used to obtain Table 3 ,  a matrix of victory probabilities for a battle 
between an attacker with i armies and a defender with j armies for values of i and j 
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not greater than 10 . Some of these are shown graphically in FIGURE 1 ,  along with 
some for higher numbers of attacking armies .  
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D: Initial number of defending armies 

Figure 1 Attacker's w i nn i ng probab i l i t ies at var ious strengths 

30 

Expected losses The expected values and variances for the losses that the attacker 
and defender will suffer in a given battle can also be found from F .  Let LA and Lv 
denote the respective losses an attacker and defender will suffer during a given battle 
given the initial state X0 = (A , D) . Let Rv = D - Lv and RA = A - LR denote the 
number of armies remaining for the attacker and defender respectively. The probability 
distributions for Rv and RA can be obtained from the last row of F :  

and 

Pr (Rv = k) = { JA
0
v,k for k = 1 ,  . . .  , D 

else 

Pr(RA = k) = { !Av
0
,D+k fo

1
r k = 1 ,  . . .  , A 

e se. 

For example, suppose A = D = 5. In this case, the 25th row of the 25 x 10 matrix F 
gives the probabilities for the D + A = 10  absorbing states: 

F25 , .  = (0 .068, 0. 1 34, 0. 1 24, 0. 1 04, 0 .064, 0.049, 0 .096, 0 . 147, 0. 1 24, 0 .09 1 ) .  

The mean and standard deviation for the defender' s  loss i n  the A = D = 5 case are 
E(Lv) = 3 .56 and SD(Lv)  = 1 .70. For the attacker, they are E(LA ) = 3 . 37 and 
SD(LA)  = 1 . 83 .  Plots of expected losses for values of A and D between 5 and 20 are 
given in FIGURE 2. This plot shows that the attacker has an advantage in the sense 
that expected losses are lower than for the defender, provided the initial number of 
attacking armies is not too small. 
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Figure 2 Expected losses for attacker and for defender 

Conclusion and recommendations The chances of winning a battle are consider
ably more favorable for the attacker than was originally suspected. The logical rec
ommendation is then for the attacker to be more aggressive. Inspection of FIGURE 1 
shows that when the number of attacking and defending armies is equal (A = D), 
the probability that the attacker ends up winning the territory exceeds 50%, provided 
the initial stakes are high enough (at least 5 armies each, initially.) This is contrary 
to Tan's assertion that that this probability is less than 50% because "in the case of a 
draw, the defender wins" in a given roll of the dice. When A = D, FIGURE 2 indicates 
that the attacker also suffers fewer losses on average than the defender, provided A is 
not small. With the innovation of several new versions of RISK further probabilistic 
challenges have arisen. RISK II enables players to attack simultaneously rather than 
having to wait for their turn and involves single rolls of nonuniformly distributed dice. 
The distribution of the die rolled by an attacker or defender depends on the number 
of armies the player has stationed in an embattled country. The Markovian property 
of a given battle still holds ,  but the entries of the transition probability matrix P are 
different. Further, decisions about whether or not to attack should be made with the 
knowledge that attacks cannot be called off as in the original RISK. 

Acknowledgment. The author thanks Jerry Veeh and Dean Hoffman and two referees for comments and confir
mations. 
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Proof With o ut Words :  
The Cu be a s  a n  Ar i th met ic  S u m  

1 = 1 

8 = 3 + 5  

27 = 6 + 9 + 12  

64 = 10 + 14 + 1 8  + 22 

tn = 1 + 2 + · · · + n --+ n3 = tn + Un + n) + (tn + 2n) + · · · + (tn + (n - I )n) 

(n-l )n  

---+ . 
2 n  

n 

tn + (n - l ) n  

-ROGER B .  NELSEN 

LEWIS AND CLARK COLLEGE 

PORTLAND , OR 972 1 9  
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In most real analysis textbooks,  the standard example of a nonmeasurable set is a 
subset of the real line that is due to Vitali [3] . We describe a similar nonmeasurable 
subset of the torus (and hence the plane), where we can more easily visualize the set. 
In the process of constructing the set, students get an opportunity to experience how 
topics they learned in algebra and topology can be used in analysis . 

The idea of Vitali 's  example is to express the unit interval I as a disjoint union of 
countably many mutually congruent sets Ak . The nonmeasurability of each Ak follows 
from the observation that I = ukEZ Ak and that countable additivity of measure im
plies that 1 = m (I) = LkEZ m (Ak) .  Since each set Ak must have the same measure, 
the last equation shows that no nonnegative value can be assigned as the measure of 
each Ak . We will use this same idea with the square [0, 1 ]  x [0, 1] in the plane JR2 • The 
advantage is that we will now have a more visual object than that of Vitali 's example 
because the example will appear as a subset of a torus .  

The torus In  order to understand the example that we will eventually construct, we 
need to consider different ways of describing the torus .  We will exploit topological 
and group theoretic properties associated with two different representations of a torus 
to obtain information that we can piece together to construct an interesting example of 
a nonmeasurable set. 

Begin by considering the square [0, 1] x [0, 1] as a topological subspace of JR2 en
dowed with the usual topology. Mter identifying opposite edges of the square, we 
obtain (via the identification topology) a space called the torus, denoted by 1!'. A con
venient way to visualize the torus is as the surface of a doughnut. In fact, the mapping 
[2 : [0, 1 ]  X [0, 1 ]  --+ JR3 given by 

n (r, s ) = ([ 2 + cos(2rr s )] cos(2rr r) , [ 2 + cos (2rr s )] sin(2rr r) ,  sin(2rr s )) 
renders a concrete parametrization of the torus as a subspace of JR3 • The mapping n 
identifies the pair of edges [0, 1 ]  x {0} and [0, 1 ]  x { 1 }  as well as the pair of edges 
{0} x [0, 1] and { 1 }  x [0, 1 ] ,  as in FIGURE 1 .  This latter pair of edges of the square, 
labelled M in the figure, corresponds to a circle on the torus called a meridian.  

Another way to visualize the torus is as the topological product of two circles 
§1 x §1 , where §1 = { e2"ir 1 0 :::::: r :::::: 1 }  is the unit circle in the complex plane C. 
Viewed in this way, the torus is a topological group under componentwise multiplica
tion.  The mapping 

\II : lR 2 --+ '][' 

given by \II (r, s ) = (e2"ir
, e2"is ) satisfies 

w ((a , b) +  (c , d)) = w ((a ,  b)) w ((c , d)) 
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(0, 1 )  ( 1 , 1 )  

j 

M M 

(0,0) ( 1 ,0) 
Figure 1 A torus is a square with opposite edges identified 

where (a , b) and (c , d) are points in IR2 . Indeed, \II is a continuous surjective group 
homomorphism (actually it is a covering map) from the additive group JR2 onto the 
multiplicative group 1!'. Moreover, the points (a , b) and (c, d) are identified via the 
mapping \II if (e2rcia ,  e2rcib) = (e2rcic ,  e2rcid ) .  Thus each unit square in IR2 is wrapped 
once around the torus by \11 . Note also that each of the vertical lines labelled Mk in 
FIGURE 2 corresponds to the meridian M. 

-

1 

0 1 

Figure 2 Each unit square in the plane is identified with the torus by Ill 

The mapping \II suggests yet another way to describe the torus. It is the quotient 
space of JR2 relative to the following equivalence relation: two points (a , b) and (c , d) 
in JR2 are identified if c = a + k and d = b + l for some integers k and l .  When this is 
the case we will write (a , b) = (c , d) mod 1. 

One-parameter subgroups of 1!' Our goal in this section is to describe a family of 
continuous group homomorphisms from lR into the torus 1!'. Such a map would wrap 
the real line on the torus. To visualize such a map, we will first send lR into IR2 and 
then identify JR2 with the torus via the map \11 . 

Let a and f3 be fixed real numbers. A mapping rp : lR --+ IR2 given by rp (t) = (at ,  f3t) is a continuous group homomorphism between the additive groups lR and IR2 • 
The image of rp is called a one-parameter subgroup of JR2 . This image is the line 
whose Cartesian equation is y = ({3/a)x . It is easy to see that if two points (as ,  f3s ) 
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and (at ,  f3t) corresponding to s i= t in � are equivalent mod 1, then {3/a is a rational 
fraction. 

Now let's suppose that the fixed real numbers a and f3 have an irrational ratio. In 
this case, if (as ,  f3s) = (at ,  f3t) mod 1, then s = t .  Thus the mapping 

\II 0 cp : � --+ 11' 

is injective, it is also a continuous group homomorphism whose image is a one
parameter subgroup of 11'. Let L denote the image of cp in �2 • Then L is a line in the 
plane. We can visualize the image \II (L) as a coil on the torus, a piece of which is 
shown in bold in FIGURE 3. Proving that this coil is dense in the torus makes a nice 
exercise, though we will not do so here. 

'lf(L) 

Figure 3 The l ine L and its translates correspond to paral lel  coi ls  on the torus 

The line L is a subgroup of the additive group �2 . For (a , b) E �2 the coset (a , b) + L is a line parallel to L, often referred to as a translate of L. Since \II is a 
homomorphism the coil \II (L) is a subgroup of the multiplicative group 11'. For p e 11', 
the coset p \II (L) is a coil parallel to \II (L) ,  because it is the image of a line (a , b) + L 
parallel to L .  Indeed, if p = \ll ((a ,  b) ) ,  then 

w ((a , b) + L) = w ((a , b)) \II (L) = p \II (L) . 

In other words, under the map \II , parallel lines of the form (a , b) + L in �2 correspond 
to parallel coils of the form p \II (L) in 11'. FIGURE 3 shows three such lines and the 
corresponding coils.  It is important to note that the lines (a , b) + L and (c , d) + L 
correspond to the same coil on the torus if and only if (a , b) = (c , d) mod 1. 

Now, each coil p \II (L) intersects the meridian M in 11' infinitely many times; this 
is easily seen in each of the representations of the torus. So by the Axiom of Choice 
there is a subset A of M such that each coset of \II (L) is represented by a unique point 
in A .  Thus the sets p \II (L) ,  p E A, form a complete set of cosets of \II (L) in 11', so we 
obtain the disjoint union 

U <pW (L)) = 11'. 
p e A  

In other words, we can visualize the torus as  the disjoint union of  uncountably many 
parallel coils, each one a coset of \II (L) . 
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A nonmeasurable subset o f  'IT' Now w e  will construct a nonmeasurable set b y  par
titioning the torus into a disjoint union of countably many geometrically congruent 
sets Ak . We begin with the subsets in the plane that consist of those parts of the trans
lates (cosets) of L that lie in the strip between Mk and Mk+I · The sets Ak are the 
corresponding sets in the torus .  They can be visualized as the portions of each coil 
p\li (L) starting and ending at M (see FIGURE 3).The details are as follows .  

For each integer k in  Z, define the set 

{ l k k + l } 
L(k) = (at ,  f3t)  � ::::: t < -a- . 

Observe that the sets L (k) are pairwise disjoint; they are merely half-open intervals on 
the line L .  In fact, they are the parts of the line L between consecutive vertical lines Mk 
in FIGURE 3 .  The corresponding sets on the torus are \ll (L (kl ) .  Now for each integer k 
in Z, set Ak = upEA p\li (L(k) )  and observe that 

Finally, the subsets Ak of the torus are pairwise disjoint by construction, pairwise 
congruent via translation (a multiplication in 'IT') , and there are countably many of them. 
The Lebesgue measure of the torus 'IT' is its surface area, a positive number. Recall that 
Lebesgue measure is translation invariant and countably additive . Therefore, if the 
sets Ak are measurable, then they have the same positive measure . Since the torus 'IT' is 
the countable union of such sets, the sets Ak cannot be measurable. 
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A fixture of any introductory course in mathematical analysis is the pathological func
tion, one whose intuition-defying behavior serves to crystallize our understanding of 
analytic concepts . Among the more accessible of these is the so-called ruler function, 
defined on (0, 1) by 

r (x ) = { �/q if x = pI q (lowest terms) 
if x is irrational . 
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An E - 8 proof shows that, if a E (0, 1 ) ,  then limx--+a r (x) = 0. Thus r is continuous 
at each irrational point and discontinuous at each rational point of (0, l ) .  But in spite 
of its being so wildly discontinuous, r is (Riemann) integrable over the unit interval, 
with 

I J r (x) dx = 0. 
0 

(These basic properties of the ruler function appear, for instance, in Abbott [1 ,  p. 1 02, 
p. 203] . )  Students at the beginning of their mathematical careers find this pathological 
indeed. 

Although an introductory course may treat continuity and even integrability of the 
ruler function, it is less likely to address that third pillar of analysis: differentiability. In 
fact, the ruler function is nowhere differentiable on (0, 1 ) ,  but proofs of this seem hard 
to come by (see [2, 3, 4]) .  What follows is an argument that is short, straightforward, 
and-as an added attraction-features a cameo appearance by no less a mathematician 
than Euclid himself. 

THEOREM . The ruler function is nowhere differentiable on (0, 1 ) .  

Proof Being discontinuous a t  each rational, the ruler function could be  differen
tiable only at irrational points, so for the sake of contradiction we assume that 

, . r (x) - r (a) 
r (a) = hm ----

exists for some irrational a in (0, l ) .  

x--+a X - a 

Letting {xn } be a sequence of irrationals in (0, 1 )  for which Xn =I= a for all n but 
where limn--+oo Xn = a, we see that 

r' (a) = lim 
r (xn ) - r (a) 

= 0. 
n--+oo Xn - a 

Consequently, for E = l ,  there exists a 8 > 0 so that, if 0 < lx - a I < 8 then 

I r (x) - r (a) I < 1 and therefore 
x - a 

r (x) < lx - a l .  ( l )  

Now l /8 > 0 ,  and because 0 < a  < l we know that 1 ja > 0 and l / ( 1 - a) > 0 
as well. Recalling Euclid's  proof that there is no largest prime number, we choose a 
prime P > max{ l /8 ,  1 ja , 1 / ( 1 - a) } .  It is clear that the interval (a - 1 /  P ,  a +  1 /  P)  
is contained in  (0, 1 ) .  In  addition, because this interval has width 2/ P ,  there exists a 
whole number k with 1 ::::: k < P for which the rational kj P belongs to it. We observe 
that kj P =I= a, because the latter is irrational, and that kj P is in lowest terms because 
P is prime. It follows that 0 < l k/  P - a l  < 1 /  P < 8 and so, by ( l )  above, 

1 / P  = r (k/P) < l k /P - a l  < l j P ,  

a contradiction. Consequently, r is nowhere differentiable o n  (0, 1 ) .  • 

One is tempted to conclude that, when it comes to differentiability, the ruler function 
just doesn' t  measure up. 
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Math B i te :  Convergence of p-ser ies 

We show the convergence of 

00 1 L kP k=l 
for p > 1 .  

Let p = 1 + q ,  q > 0. The sequence of partial sums, whose nth term is Sn = L�=1 1 fkP , is monotone increasing. It is also bounded, as follows. Let n = l Oj - 1 ,  
then 

lOj _ l 1 1 1 1 L kP = 1 + 
2P 

+ . . .  + kP 
+ . . . + ( lOj - l )P k= l 

1 1 1  1 1 1 I I 
= 1 + - + . . .  + - + - + - + . . .  + - + - + - + . . .  + - + . . . 

2P 9P lOP l l P 99P lOOP 10 J i' 999P 

9 terms 90 terms 900 terms 

1 1 I 1 1 
< 1 + . . · + 1 + - + . .  · + - + -- + · . .  + -- + . .  · + -.,--. -:--

lOP lOP lOOP lOOP ( lOJ - l )P 

90 900 ( 1 1 1 ) 9 
= 9 + 

lOP 
+ 

lOOP 
+ . . .  = 9 l + 

l(YJ + 
102q + . . . + lO(j - l)q < 

I - 1 0-q . 

Readers may wish to adapt the argument to show divergence in the case where 
p < 1 .  The first step is 

lOj 1 1 1 1 L kP = 1 + 
2P + · · · + 

nP 
+ · · · + ( lOj )P k= I 

1 1 1 1 1 1 1 I 
= 1 + - + · . .  + - + - + - + . . .  + - + - + - + · . .  + -- + . . .  

2P lOP l l P 12P lOOP 101 P 102P 1 000P 

9 terms 90 terms 900 terms 

-SIDNEY H .  KUNG 
UNIVERSITY OF NORTH FLORIDA 

JACKSONVILLE,  FL 3 2224 
SHKUNG @ TU . INFI . NET 

[Editor 's note: Another manuscript received at about the same time, from Eugene Bo
man and Richard Brazier of Penn State University, Dubois Campus, presented this 
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same idea using powers of 2. A referee pointed out that both methods amount to the 
Cauchy Condensation Test. See Konrad Knopp 's classic books Infinite Sequences and 
Series or Theory and Application of Infinite Series.] 
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A matrix A is said to have finite order n ::: 1 if An = I and A' i= I for 1 ::::: r < n .  
Otherwise w e  say that A has infinite order. An elementary exercise in abstract algebra 
asks for 2 x 2 matrices A ,  B over lR each of finite order such that A B  has infinite 
order. The matrices 

A _ [ cos O 
(J 

- sin e 
- sin e J cos O 

[ cos O 
and Bg = . l) 

sm u 
sin O ] 

- cos O 

represent rotation about the origin through the signed angle e and reflection in the line 
y = x tan(O /2) . The matrix Ag has finite order if and only if e is a rational multiple 
of 2n , whereas every matrix Bg has order 2. Moreover Ag At/> = AH<I> ,  Ag Btl> = BH<I> , 
Btf>A(J = Btf>-(J •  and Bg Btf> = A(J-tf> ·  Now let e be an irrational multiple of 2n . Then 
the reflection matrices Bg and B0 have finite order, and their product Bg B0 = Ag has 
infinite order. 

Are there examples other than reflections? To answer this it is natural to consider 
the matrices of finite order in GL(2, JR) , the multiplicative group of nonsingular 2 x 2 
matrices .  The purpose of this note is to classify the matrices of finite order in GL(k , F) 
for the fields F = C, JR, and Q, and to provide further examples of finite order matrices 
whose product has infinite order. The solution to this classification problem involves 
the factorization of xn - 1 over F, and an application of the cyclic decomposition 
theorem of linear algebra. In this connection, we mention the paper [3] in which Robert 
Hanson determines, for a given n ,  the minimum k for which there is a k x k matrix A 
over F of order n ,  when F is C, JR, or Q. 

Note that when F is a finite field with q elements then GL(k , F) is a finite group 
of order (qk - 1 ) (qk - q) . . .  (qk - qk- l )  [6, p. 178] ,  so that each k x k matrix over F 
has finite order. 

Minimal polynomials The text Blyth & Robertson [1] contains a concise account, 
with proofs, of the results of linear algebra stated here. 

Having the same order (finite or infinite) is an equivalence relation in the multi
plicative group GL(k , F) . We say that A is similar to B ,  denoted by A "' B , if there 
exists a nonsingular matrix P such that B = p - 1AP. If A is similar to B ,  then A and 
B have the same order. 

We denote the set of all k x k matrices over the field F, singular and nonsingular, by 
Mk (F) . If A E Mk (F) there is a polynomial p E F [x]  for which p (A) = 0. One such 
polynomial is the characteristic polynomial of A defined by XA (x) = det(x i - A) . 
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The minimal polynomial o f  A i s  the monic polynomial m A E F [x]  of least degree sat
isfying mA (A) = 0. The minimal and characteristic polynomials have the same zeroes 
over F and thus have the form 

_ pf!J f3r XA - I · · · Pr ' 
where the p; are distinct monic irreducible polynomials over F, and a; , {3; are integers 
with 1 :S a; :S {3; . Note that, by considering dimensions, we have I:;=, {3; deg(p; ) = k .  
A matrix is diagonalizable over F i f  and only i f  its minimal polynomial i s  a product 
of distinct linear factors over F .  And, if p is a polynomial over F such that p (A) = 0, 
then the minimal polynomial mA divides p .  Thus if A has finite order n ,  then mA 
divides x" - 1 .  The irreducible factorization of the polynomial x" - 1 over the fields 
C, lR, and Q are well known, and we will consider these below. 

Factorization of xn - 1 Denote the complex nth roots of unity by 1 ,  w, . . . , w"- 1 •  
Then the irreducible factorization over C can be expressed as 

x" - 1 = (x - I ) (x - w) · · · (x - w"- 1 ) . 

From this factorization over C, we obtain the factorization of x" - 1 over lR by 
combining conjugate pairs of factors : 

(x - wj ) (x - w"-j ) = x2 
- (2 cos z:j )x + I . 

We write Pe = x2 
- (2 cos O)x + 1 and ej = 2n j In .  Then over lR we have the factor

ization 

x" - 1 = (x - l ) (x + l )pe1 • • •  Pe, , 
or x" - 1 = (x - 1 )  Pe1 • • • Pe, , 

when n = 2r + 2, 

when n = 2r + 1 .  

We obtain the factorization of x" - 1 over Q by combining factors involving the 
primitive mth roots of unity as m ranges over the divisors of n .  Let Um denote the 
multiplicative group of all mth roots of unity. An element � E U m is called a primitive 
mth root of unity if � has order m .  Denote the set of primitive m th roots of unity by Qm . 
Then Qm = {exp(2n irjm) : 1 :S r :S m ,  (r, m) = 1 } . The number of elements in Qm 
is denoted by cp (m) ,  known as Euler's phi-function. The mth cyclotomic polynomial is 
the monic polynomial ct>m whose roots in C are the primitive mth roots of unity, that is ,  

The first few cyclotomic polynomials are: ct>1 = x - I, ct>2 = x + I , ct>3 = x2 
+ x + 1 ,  

ct>4 = x2 
+ 1 ,  ct>5 = x 4  + x 3  + x2 

+ x + 1 ,  ct>6 = x2 - x + I .  Recursion formulae for 
ct>m are set out in Lang [5, pp. 206--207] ,  where in addition it is shown that ct>m has 
integer coefficients and is irreducible over Q. The group Un is the disjoint union of the 
sets Qm for all divisors m of n .  The irreducible factorization of x" - 1 over Q is then 

We illustrate this by finding the factorization of x8 - 1 .  Let w = e2ni /S .  The divisors 
of 8 are 1 ,  2, 4, 8. The primitive I st root of unity is 1 .  The primitive 2nd root of unity 
is - 1  = w4 • The primitive 4th roots of unity are e2ni /4 

= w2 
and e6n i /4 = w6 • The 



VOL. 76,  NO. 2 ,  APRI L 2 003 145 

primitive 8th roots of unity are w, w3 , w5 , w 7 • The irreducible factorization over Q is 
then 

x8 - 1 = <1> 1 <1>2 <l>4 <l>s 

= (x - l ) (x + l ) (x2 + l ) (x4 + 1 ) .  

Since these factorizations are products of distinct irreducible factors, w e  see that if 
the matrix A has finite order over <C, JR, or Q, then rnA is a product rnA = p1 · • · p, of 
distinct irreducible polynomials .  

Cyclic decomposition The companion matrix of a monic polynomial 

f = ao + a1x + · · · + ak- l Xk- l + xk 

is the k x k matrix 

0 0 0 0 -ao 
1 0 0 0 -a1 

C (f) = 0 1 0 0 -a2 

0 0 0 1 -ak- 1 

The minimal polynomial of C (f) is f (Herstein [4, p. 307]) .  The companion matrix 
of a linear polynomial a0 + x is simply the matrix [ -a0] .  

Given matrices A1 and A2, their direct sum i s  the block diagonal matrix 

We denote the direct sum of j copies of a matrix C by C[j ] . The order of a direct sum 
is the least common multiple (lcm) of the orders of its summands. 

We state the cyclic decomposition theorem in the special case when the minimal 
polynomial is a product of distinct irreducible polynomials.  

CYCLIC DECOMPOSITION . If the minimal and characteristic polynomials of A in 
Mk (F) are 

rn A = P l . . . Pr . 

where the Pi are distinct monic irreducible polynomials in F [x], then 

As an illustration, if A E M8 (JR) has 

rn A = (x2 + l ) (x - 1) and XA = (x2 + 1 ) 3 (x - 1 )2 , 

then 

A "' C (x2 + 1 )  EB C (x2 + 1 )  EB C (x2 + 1 )  EB C (x - 1 )  EB C (x - 1 ) .  

Matrices of finite order over <C Let A i n  GL(k, <C )  have finite order n .  Then rn A  
divides (x - l ) (x - w) . . .  (x - wn- 1 ) . It follows that rn A  factors into distinct lin
ear factors over <C, so that A is diagonalizable over <C. Thus A is similar to a diag-
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anal matrix whose diagonal entries A i  are members of Un = {z E C I zn = 1 } .  Let 
G = U:1 Un be the multiplicative group of all roots of unity. The order of any z E G 
is the least positive n for which zn = 1 .  If A is a diagonal k x k matrix whose diagonal 
entries Ai belong to G, then A has finite order equal to the lcm of the orders of the A.i . 

Thus we obtain the classification of matrices of finite order over C. 

THEOREM.  A matrix A in GL(k , q has finite order if and only if A is similar to 
a diagonal matrix diag(A.J . A.2 , . . .  , A.k) for some A J .  A.2 , . . .  , A.k in the multiplicative 
group G of all complex roots of unity. 

The order of such a matrix is the lcm of the orders of A J , A.2 , . . .  , A.k . 

Thus for a given k � 1 ,  there exist k x k matrices over C of any finite order. 

Matrices of finite order over lR The characteristic polynomial of the 2 x 2 rotation 
matrix Ae is the polynomial Pe = x2 - (2 cos e )x + 1 .  If 0 < e < 1r ,  then Pe is irre
ducible over JR, so that mAo = p0 . It follows from the cyclic decomposition theorem 
that Ae is similar over lR to C (p0 ) , for 0 < e < 1r .  Additionally one may see this by 
verifying that Q Ae = C (pe ) Q, where 

Q - [sin e - cos e] 
-

0 1 . 

Now let A E GL(k, JR) have finite order n ,  so that rnA divides xn - 1 .  Then there exist 
E J , E2 E {0, 1 } ,  an integer r � 0, real numbers ei with 0 < el < · · · < e, < JT ,  SUCh 
that each ei is an integer multiple of 2n In and 

rnA = (x - 1 )' 1 (x + 1 )'2 Pe1 • . .  Pe, . 

Moreover there are integers k1 � EJ , k2 � E2 , d1 , • • •  , d, � 1 such that 

( 1 )k, ( + 1 )k2 d, d, XA = x - x Pe 1 • • • Pe, , 

where if E 1  = 0 then k 1 = 0, and if E2 = 0 then k2 = 0. Since C (pe ) "' Ae ,  we obtain 
the cyclic decomposition 

A "'  I ffi (- I ) EB A [d i l EB · • · EB A [d, J � w � � � ' 

where h is the k x k identity matrix. Note that k = k1 + k2 + 2(dJ + · · · + d, ) . If 
e = 2najb is a rational multiple of 2n with ajb in lowest terms then Ae has finite 
order b .  

Thus we obtain a classification over JR. 

THEOREM. A matrix A in GL(k, JR) has finite order if and only if A is similar to 

I ffi (- I ) ffi A[dJ l ffi . . .  ffi A[d, J k1 w k2 w e1 w w e, , 

where k ] ,  k2 � 0, r � 0, dJ , . . .  ' d, � 1, 0 < el < . . .  < e, < JT, each ei is a rational 
multiple of2n, and k1 + k2 + 2(d1 + · · · + d, ) = k. 

Writing ei = 2nadbi with adbi in lowest terms, the order of such an A is 
lcm{2, b1 , . . .  , b, } or lcm{ b 1 . . . .  , b, } according as k2 > 0 or k2 = 0 respectively. 

COROLLARY. A matrix A in GL(2, JR) has finite order if and only if A is similar to 
a rotation matrix Ae, where 0 :::: e :::: 1r is a rational multiple of2n, or to the reflection 
matrix B0. That is, 
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- sin e] 
cos e 

Thus for k :=::: 2 there exist k x k matrices over lR of any finite order. 

1 4 7 

EXAMPLE . We give an example of matrices A, B of finite order whose product A B 
has infinite order, and A is neither a rotation nor reflection matrix.  Let A = p - I J P 
where [ 1 1.] p = 

0 i , 
Let B be the rotation matrix corresponding to e = Sn /4. Thus 

B - -
1 [- 1  

- � - 1  
1 [-2 OJ and A B  = � 1 1 . 

Then A2 = I =  B8 . If X  = [0 1 f then (A B)X = 2- 1 12X and (AB)n X = 2-ni2X 
for all n :::: 1 .  Thus A B has infinite order. 

Matrices of finite order over Q Let A in GL(k, Q) have finite order n .  Then the 
irreducible factorizations of rnA and XA over Q are given by 

ffi ffi d _ ffid) ffidr rnA = ""'m l 0 0 0 'Vm, , an XA - ""'m l 0 0 0 ""'m, ' 

where r :::: 1 ,  m 1 , • • •  , mr are distinct and divide n ,  and d; :=::: 1 .  It follows that 
d1 ¢ (m 1 )  + · · · + dr</J (mr) = k. The cyclic decomposition is given by 

A �  C (<t>m YdJ l  EB . . . EB C (<l>m, ) rd, J . 

The order of C (<l>m) is determined as follows. Let a :=::: 1 be the order of C = C (<l>m ) .  
Since the minimal polynomial of C is <I>m , and <I> m  divides xm - 1 ,  w e  deduce that 
em = I ,  so that m is a multiple of a .  On the other hand ca = I  and so <I>m divides 
XC< - 1 = nd la <I> d . Hence <l>m = <l>d for some divisor d of a. As the cyclotomic poly
nomials are distinct, we deduce that m = d, that is, m is a divisor of a. Thus the order 
of C (<l>m ) is m .  We have proved the following : 

THEOREM.  A matrix A in GL(k , Q) has finite order if and only if A is similar to 

C (<t>mYdJl EB . . . EB C (<I>m, ) rd, J 

where r :=::: 1, m 1 < · · · < m, d1 , • • •  , dr :=::: 1 and d1 ¢ (m 1 )  + · · · + dr</J (mr)  = k. The 
order of such an A is lcm{m 1 ,  • . .  , mr } .  

To illustrate this theorem, let C [a,  . . .  , w] denote the direct sum C(<l>a) EB · . · EB 
C (<l>w) . Then C [a,  . . .  , w] has order lcm{a, . . .  , w} and size k x k, where k = ¢ (a) + 
. . .  + </J (w) . For instance 

lo - 1  
1 - 1  

C[3 ,  4] = C (<l>3) EB C(<l>4) = O O 
0 0 

has order 12  and size k x k where k = ¢ (3) + ¢ (4) = 4.  

� -!] 
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We now specialize to the case k = 2 of this theorem. This table of the function ¢ (n) 
i s  sufficient for our purposes: 

n 1 2 3 4 5 6 7 8 9 10  1 1  12 13 14 15 1 6  
¢ (n )  2 2 4 2 6 4 6 4 10 4 12  6 8 8 

The inequality Jn/2 _::::: ¢ (n)  (Burton [2, p. 141 ] )  implies that to find ¢- 1 (k) we 
need only check a table of cf> (n) for n _::::: 4k2 . There are two cases. Solving ¢ (m 1 ) + 
¢ (m2) = 2 gives (m 1 ,  m2) = ( 1 , 1 ) ,  ( 1 ,  2) , (2, 2) . Solving ¢ (m 1 )  = 2 gives m 1  = 
3 ,  4, 6. Hence A E GL(2, Q) has finite order if and only if A is similar over Q to one 
of the six matrices C[ l , l ] ,  C [ l ,2] , C[2,2] , C[3] ,  C[4] , C[6] of orders I , 2, 2, 3 ,  4, 6 
respectively. 

COROLLARY. A matrix A in GL(2, Q) has finite order if and only if A is similar to 
one of 

[ 1 OJ [ I OJ [- 1 OJ [0 - IJ [0 - IJ [0 - I J 
0 1 ' 0 - 1 ' 0 - 1 ' 1 - 1 ' I 0 ' 1 I 

. 

In contrast to the complex and real cases, the only possible finite orders for a ra
tional 2 x 2 matrix are 1 ,  2, 3, 4, and 6. We can show, by a similar analysis, that 
there are ten similarity classes of finite order matrices in GL(3 , Q) with possible 
orders { 1 ,  2, 3, 4, 6} ,  and twenty-four such classes in GL(4, Q) with possible orders 
{ 1 ,  2, 3 ,  4, 5 ,  6, 8 ,  10, 1 2} . 

EXAMPLE. The matrices 

have orders 3, 2 respectively, and A B  = [� � J has infinite order. It is easy to see 

that A B  is not similar over Q to any of the above finite order matrices by comparing 
characteristic polynomials. 

Acknowledgments. I wish to thank a former colleague Dr. Ernest Eckert who, in casual conversation , mentioned 

the exercise in the introduction, and kindly brought the paper by Hanson [3] to my attention. 
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Math B i te :  The Extra D i sta n ce 
i n  an  Outer  Lane of a Ru n n i n g Track 

E L L I OT T  A .  W E I N ST E I N  
Centers for Med icare & Med ica id  Serv i ces 

Ba l t i more, MD 2 1  2 44 
ewe i nste in2 @ c m s . h hs .gov 

The following question was asked recently in Runner 's World [2] , a widely circulated 
running magazine: 

At the track I use for speed workouts, I 'm only allowed to use the outer lanes for 
training. But the distances of the outer lanes differ from those of the inner lanes. 
How can I find the exact distances of all the lanes? 

This is a common question, since the inner lanes are yielded to faster runners by 
protocol, to slower runners and walkers who ignore or are ignorant of the protocol, 
and to the entire high school marching band, which just happens to be practicing on 
the track during your workout and is not bound by the protocol. 

Of the two prominent coaches who answered the question, amazingly, the first went 
out to his rather standard 400-meter college track and actually measured (he didn't  say 
how) the distances in lane 4 and lane 8 and suggested interpolating for the other lanes ,  
while the second recommended running a lap in each lane while holding the pace 
steady throughout and noting the time differences [2] . Needless to say, these answers 
leave much to be desired. 

A running track (as defined by its lane dividers) is composed of a pair of paral
lel, aligned straightaways connected at the ends by symmetrical turns. A tum is con
structed in one of two ways :  a single radius sweeps out concentric semicircles (a quad
rant track, as in FIGURE 1 ) ;  alternatively, equal radii sweep out circular arcs adjoining 
a straightaway from four centers, and these arcs are piecewise smoothly connected to 
central arcs swept out by another radius of longer length (a double-bend track, as in 
FIGURE 2) [4] . The first kind of track is by far the more common; the second looks 
more squarish and allows for a larger infield area. In either case, for any given track, 
every lane has the same width, constant (in a normal line sense) throughout the circuit. 

Figure 1 A 4- lane quadrant track Figure 2 A 4- lane doub le-bend track 

It is known [3] that the extra distance traveled around a path everywhere a distance 
d exterior to a piecewise-smooth simple closed convex curve (such as a lane divider ! ) 
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is simply 2rrd. Note that this result i s  independent of the distance around the interior 
curve. The same result holds more generally for a path exterior to a nonconvex curve, 
provided the exterior path does not develop any awkward kinks or loop back on it
self [1 ] .  So it follows from either reference that for a running track with lane width 
w ,  the extra distance around the track when running in lane n is simply 2rr w (n - 1 ) .  
O f  course, this result i s  trivially true for a quadrant track, where the two turns taken 
together form circles . 

In practice, the distance around any lane (including lane 1 )  of a 400-meter track, 
the outdoor stand�d nowadays,  is actually measured not around the outer edge of the 
lane's  inner boundary as one might expect, but rather around an undrawn curve, called 
the measure line, which is everywhere 20 em exterior to that outer edge [4] . (No doubt 
it has to do with the fact that one needs two feet with which to run.) Since this just 
shifts the reference while preserving the lane width, the extra distance sought after 
will not change. 

According to international standards, an outdoor track's lane width can vary from 
36 to 48 inches [2] . Applying the result above gives a range of 5 .75-7 .66 meters per 
lane per lap of extra distance. The standard lane width for most U.S .  high school and 
college outdoor tracks is 42 inches [2] , thus resulting in an extra 6.70 meters per ad
ditional lane. So for a track with this lane width, lane 4 has a distance of 420 meters 
and lane 8 has a distance of 447 meters , rounded to the nearest meter. It turns out the 
first coach measured lane 4 one meter too short and lane 8 two meters too short. He 
may well have shortened his work considerably if he simply took the differences in the 
lanes' staggered starting marks for an appropriate track event. Regardless ,  he probably 
measured along the outer edge of a lane's  interior divider, inconsistent with the mea
sure line rule. We apply the result yet again and subtract 2rr (20) em, or 1 .26 meters, 
from our figures, which indeed gives the distance the coach measured for lane 4, but 
his distance for lane 8 still comes out one meter too short. Apparently, it's safer and 
easier just to do the math ! 
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(continued from page 161) 

a block. Thus a vertical block is associated to at most four stamps. 

-
v-
b 
I 
0 

h-block I s I s 
c 
k 

s s 

s s 

v-
b 
I 
0 
c 
k 

Thus, if we count stamps block by block (plus the extra stamps in the two 
leftmost columns), the total number is n2 :S 2n + 3H + 3 V + 2H + 4 V = 2n + 
5H + 7V  :s 2n + 6H + 6V ,  giving the desired bound. 
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Proposa l s  
To be considered for publication, solutions should be received by September 1 ,  
2003. 

1667. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, AB, Canada. 

Let a ,  b, and c be nonnegative constants . Determine the maximum and minimum 
values of 

Ja2x2 + b2y2 + c2z2 + Ja2y2 + b2z2 + c2x2 + Ja2z2 + b2x2 + c2y2 , 

subject to x2 + y2 + z2 = 1 .  

1668. Proposed by Steve Butler, Provo, UT. 

Let f be a real valued function defined on an open interval I containing [a , b] . 
Assume that f has a continuous second derivative on I and that there is a single line 
tangent to the graph of y = f(x) at (a , f (a)) and (b, f (b) ) .  Prove that if f" (x) is not 
identically zero on (a , b) ,  then f" (x) must change sign at least twice on (a , b) . 

1669. Proposed by Ali Nabi Duman (student), Bilkent University, Turkey. 

Let ABC be a triangle and let E be the midpoint of BC. A circle passing through A 
and C intersects BA and BC in points G and E respectively. Let D be the midpoint of 
EC. A line through D and perpendicular to BC intersects AC at F, with 3AF = FC. 
Prove that triangle FDG is similar to triangle ABC. 

1670. Proposed by Erwin Just (Emeritus) and Norman Schaumberger (Emeritus), 
Bronx Community College of the City University of New York, Bronx, NY. 

Let n :=:: 3 be an odd integer and let {a 1 , a2 , . . .  , a</> (n) } be the set of positive integers 
less than n and relatively prime to n .  Prove that 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 
succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of Math

ematics, Iowa State University, Ames, lA 500 1 1 ,  or mailed electronically (ideally as a k\T]3X file) to 

ehj ohnst @ i as t at e . edu . All communications should include the reader's name, full address, and an e-mail 

address and/or FAX number. 
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</> (n) (akJT ) 1 n cos -- = </> (n) • 
k= I n 2 

1671. Proposed by M. N. Deshpande, Institute of Science, Nagpur, India. 

Let T be the set of triangles ABC for which there is a point D on BC such that seg
ments AB, BD, AD, DC, and AC have integral length and !.ACD = 4 !_ABC = � !.ADB. 

(a) Characterize the sets {a ,  b, c }  that are sets of side lengths of triangles in T. 
(b) Find the triangle of minimum area in T. 

Qu ick ies 
Answers to the Quickies are on page 1 55. 

Q929. Proposed by G. Don Chakerian, University of California, Davis, CA, and Mur
ray S. Klamkin, University of Alberta, Edmonton, AB, Canada. 

Let Q be a convex spherical quadrilateral contained in an open hemisphere. Show 
that if the opposite angles of Q are equal , then so are the opposite sides. 

Q930. Proposed by Norman Schaumberger (Emeritus), Bronx Community College of 
the City University of New York, Bronx, NY. 

Let x ,  y ,  z be real numbers with 0 < x ,  y , z < 1 and x + y + z = 2. Prove that 

So l ut ions  
Bounds on a Sequence April 2002 

1643. Proposed by Arpad Benyi, University of Kansas, Lawrence, KS, and loan Ca�u. 
West University ofTimi�oara, Timi�oara, Romania. 

The sequence (xn )n O':.O of nonnegative real numbers satisfies the inequalities 

n ::0: 2 , 

where c is a positive constant. Show that for integers n and k, with 0 :S k :S n ,  

I .  Solution by Tom Jager, Calvin College, Grand Rapids, MI. 
First observe that if x., = 0 for some s ::::: 2, then x., - I = 0, and if x, = 0 for some 

s ::::: 0, then x.,+ 1 = 0. It follows that either xk = 0 for all k ::::: 1 ,  or xk > 0 for all k ::0: 0. 
In the first case it is easy to check that the desired inequalities hold, if we interpret 
x0 = 1 when x = 0. For the second case, define Us = x, j Xs- I for s ::0: 1 .  Because 
Us :S cus+ I for s ::0: 1 ,  it follows that u, :S c1 us+t for all s ::0: 1 and t ::0: 0. Hence, 
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s=O k 

The desired inequality follows immediately. 

II. Solution by Knut Dale, Telemark University College, Telemark, Norway. 

153 

As in the first solution, the case in which Xn = 0 for n ::::: 1 is immediate, so we 
assume that Xn > 0 for n 2: 0. We define the sequence (an )n>O by Xn = xoean c-n212 . 
The condition xL 1 :S cxn_2xn , n 2: 2 is then equivalent to 2a;_ 1 :S an-2 + an , n 2: 0, 
and the inequality to be proved is equivalent to 

O :s k :s n . 

This inequality is trivial for k = 0 and k = n .  The cases 0 < k < n follow from the 
inequality 

( l) 

This is true for k = 0. If inequality ( 1 )  holds for a given k ::::: 0, then we have 

This establishes ( 1 )  by induction, and it now follows that for 0 < k < n ,  

This completes the proof. 

Also solved by Roy Barbara (Lebanon). Michel Bataille (France). Kenneth Bernstein. ]any C. Binz (Switzer
land). Minh Can, Daniele Donini (Italy). Robert L. Doucette, Marty Getz and Dixon Jones, Elias Lampakis 
(Greece), Rolf Richberg (Germany). Li Zhou. and the proposer. 

Functions of 1\vo Variables April 2002 
1644. Proposed by Michael Golomb, Purdue University, West Lafayette, IN. 

Assume that the continuous, real valued functions fi ,  i = 1 ,  2, are defined on the 
domain 'D = { (x , y) : 0 ::=: x ::=: y ::=: 1 }  and satisfy the following: 

( l) fi (x ,  x) = 0, 0 :S x :S 1 ,  
(2) /; (0, x) + fi (x ,  1 )  = 1 ,  0 ::=: x ::=: 1 ,  

(3) /; (x , y )  i s  strictly decreasing i n  x and strictly increasing in y .  

Show that there i s  a point (x0 , Yo) E 'D such that /J (xo , Yo) = /l (xo , Yo) = ! · 
Solution by McDaniel College Problems Group, McDaniel College, Westminster, MD. 

Because fi (O, 0) = 0 and /; (0, 1 )  = 1 ,  for each i there is a t; with 0 < t; < 1 
such that /; (0, t; ) = f; (t; , 1 )  = 1 /2.  If t1 = t2 , then (x0 , y0) = (0, t1 ) satisfies the de
sired conditions .  If t1 =/= t2 , then we may assume that t1 < t2 . By condition (3), we 
have fi (O, x) < 1 /2, and hence fi (x ,  1 )  > 1 /2, for 0 ::=: x < t; . Thus, if 0 :S x < t1 , 
the vertical segment from (x , x )  to (x , 1 )  contains exactly one point (x , g; (x) )  such 
that fi (x ,  g; (x))  = 1 /2.  In particular, g1 (0) = t1 < t2 = g2 (0) . Because h (t1 , 1 )  > 
h U2 , 1 ) ,  it follows that g2 (t1 )  < 1 = g1 (t1 ) .  Let A =  {x : 0 < x < t1 and g 1 (x) < 
g2 (x) }  and set a = sup( A) .  Because /J and h are continuous,  0 < a < t1 • If g1 (a) < 
g2 (a) ,  then by the continuity of f1 and /2, there is a t > a with g1 (t) < g2 (t ) .  This 
is impossible. If g1 (a) > g2 (a) ,  then there is an E > 0 such that g1 (x )  > g2 (x) for 
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a - E < x < a, contradicting the fact that a = sup(A) .  Thus it must be the case that 
gl (a) = g2 (a) , so (xo , Yo) = (a, g l (a ))  is a point with !1 (xo , Yo) = h (xo ,  Yo) = ! · 

Also solved by Roy Barbara (Lebanon), Michel Bataille (France), John Christopher; Daniele Donini (Italy), 
Knut Dale (Norway), Robert L. Doucette, Brian D. Ginsberg, Tom Jager; Elias Lampakis (Greece), James M. 
Meehan, Stephen Noltie, Rolf Richberg (Germany), Ralph Rush, Jawad Sadek, Achilleas Sinefakopoulos, John 
W Spellmann and Sam H. Creswell, Nora Thornber; Dave Trautman, Daniel G. Treat, Paula Grafton Young, Li 
Zhou, and the proposer. 

Disconnected Magic April 2002 
1645. Proposed by Philip Straffin, Stephen Goodloe, and Tamas Varga, Beloit College, 
Beloit, WI. 

A graph is called magic if it has n � 1 edges and its edges can be labeled by the 
integers 1 ,  2, . . .  , n with each integer used once, and so that the sum of the labels of the 
edges at any vertex is the same. Are there any magic graphs which are not connected? 

Solution by Daniele Donini, Bertinoro, Italy. 
We show that for any integer m � 1 ,  there exists a magic graph with m components . 

One such graph is the graph 

Gm = K4. 4 U · · · U K4. 4 , 

consisting of m copies of the complete bipartite graph K4, 4• We use magic squares to 
generate a magic numbering scheme for the edges of G m . 

Write the numbers from 1 to 1 6m in the cells of a 4 x 4m grid, as illustrated in 
Table 1 .  Starting from the left, partition the grid into m 4 x 4 grids. Replace any diag
onal element x in one of these grids by its "complement" 16m - x + 1 .  See Table 2. 
This process performs interchanges between selected pairs of numbers in positions 
that are symmetric about the center point of the grid, so the numbers in the resulting 
table are still the numbers 1 through 1 6m .  In addition, each 4 x 4 subgrid is now a 
magic square in which the elements in each row and each column sum to 32m + 2. 

TABLE  1 :  

I 2 3 4 5 6 7 8 . . .  4m - 3  4m - 2  4m - 1  4m 
4m + I 4m + 2  4m + 3  4m + 4  4m + 5  4m + 6  4m + 7 4m + 8  . . .  8m - 3 8m - 2  8m - 1  8m 
8m + I 8m + 2  8m + 3  8m + 4  8m + 5  8m + 6  8m + 7 8m + 8  . . .  1 2m - 3  1 2m - 2  1 2m - 1  12m 
1 2m + I 1 2m + 2  1 2m + 3  12m + 4  1 2m + 5  1 2m + 6  1 2m + 7 1 2m + 8  . . .  1 6m - 3  1 6m - 2  16m - 1  1 6m 

TABLE  2 :  

1 6m 2 3 1 6m - 3  16m - 4  6 7 1 6m - 7 . . .  1 2m + 4  4m - 2  4m - I  1 2m + !  
4m + I 1 2m - 1 1 2m - 2 4m + 4  4m + 5 1 2m - 5 1 2m - 6  4m + 8  . . .  8m - 3  8m + 3 8m + 2  8m 
8m + I 8m - 1  8m - 2  8m + 4  8m + 5 8m - 5 8m - 6  8m + 8  . . .  1 2m - 3  4m + 3  4m + 2  1 2m 

4m 1 2m + 2  1 2m + 3  4m - 3  4m - 4  1 2m + 6  1 2m + 7 4m - 7 . . .  4 1 6m - 2  1 6m - I  1 

For I :::: k :::: m,  the edge labels for the k-th component of Gm are determined by 
the k-th 4 x 4 grid, 

1 6m - 4k + 4  4k - 2  4k - 1 1 6m - 4k + 1 

4m + 4k - 3 1 2m - 4k + 3 12m - 4k + 2 4m + 4k 

8m + 4k - 3 8m - 4k + 3  8m - 4k + 2  8m + 4k 

4m - 4k + 4  1 2m + 4k - 2 12m + 4k - 1 4m - 4k + 1 
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The corresponding component K4,4 has vertices rk 1 , rkz , rk3 , rk4 • e l k , c2b c3b c4k cor
responding to the rows and columns of Tk . and edge set {rk; cjk : 1 :S i, j :S 4} . If we 
assign to edge rk; Cjk the entry in row i and column j of Tk . then the sum of the edges at 
each vertex corresponds to a row or column sum from Tk . It follows that the resulting 
graph Gm is magic, with the edge labels at each vertex summing to 32m + 2 .  

Note. Many readers submitted simple examples of  nonconnected magic multigraphs, 
that is, graphs in which at least one pair of vertices is joined by more than one edge. 

Also solved by The Carroll College Problem Solving Group, Eddie Cheng, Marty Getz and Dixon Jones, 
Khudija S. Jamil, and the proposers. 

Power Sums in a Sequence April 2002 
1646. Proposed by Erwin Just (Emeritus), Bronx Community College, Bronx, NY. 

Let a > 0, b, k > 0, and m > 0 be integers, and assume that the arithmetic progres
sion {an + b}�0 contains the kth power of an integer. Prove that there are an infinite 
number of values of n for which an + b is the sum of m k-th powers of nonzero inte
gers . 

Solution by Kenneth Bernstein, Belmont, MA. 
Let ano + b = ck , and let c 1 , c2 , • • .  , Cm- l be any nonnegative integers. Then for 

n = n0 + ak- 1 (c� + c� + · · · + c�_ 1 ) , an + b is the sum of m k-th powers of nonzero 
integers. 

Also solved by Roy Barbara (Lebanon), ]any C. Binz (Switzerland), Knut Dale (Norway), Daniele Donini 
(Italy), Ovidiu Furdui, Brian D. Ginsberg, Tom Jager, Lenny Jones, Elias Lampakis (Greece), Peter W. Lindstrom, 
Rolf Richberg (Germany), Li Zhou, and the proposer. 

Answers 
Solutions to the Quickies from page 1 52.  

A929. Assume that Q lies on a sphere of  radius 1 and has sides a;  and angles a; , 
i = 1 ,  2, 3 ,  4. The spherical supplement of Q, denoted by Q* , has sides a; and angles 
a; satisfying a; + a; = a; + a; = rr ,  1 ::; i ::; 4. (See, for example, George Polya's 
Mathematics and Plausible Reasoning, Volume 1 :  Induction and Analogy in Mathe
matics, Princeton University Press ,  1 954, p. 57.) Because a; = rr - a; , it follows that 
if the opposite angles of Q are equal, then the opposite sides of Q* are equal. Next 
consider the two triangles formed from Q* by drawing one of the diagonals of Q* .  By 
the SSS congruence theorem for spherical triangles, the two triangles are congruent. It 
follows that opposite angles in Q* are equal, and then that the opposite sides of Q are 
equal. (Additional solution on p. 1 06.) 

A930. Observe that ( 1 - x) + (1 - y) + (1 - z) = 1 .  By the weighted arithmetic/geo
metric mean inequality, 

x 1-xy l-yz l -z ::; x ( l - x) + y ( l - y) + z ( l - z) 

x 1-Yy 1-zz 1-x ::; x ( 1 - y) + y ( 1 - z) + z ( l - x) 

x 1-zy l-xz 1-y ::; x ( 1 - z) + y ( l - x) + z ( l - y) .  

Adding these inequalities gives the desired result. 
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Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles, books, and other materials are 

selected for this section to call attention to interesting mathematical exposition that occurs out

side the mainstream of mathematics literature. Readers are invited to suggest items for review 

to the editors. 

Arney, Chris, and Donald Small (eds .),  Changing Core Mathematics, MAA, 2002; xi + 1 83 pp, 
$28 .95 (P) ($22.95 to members) . ISBN 0-88385-172-5 . 

This volume was sent to mathematics departments throughout the country to stimulate change 
in the first two years of college mathematics for mathematics, science, and engineering students . 
For years, that core has been dominated by calculus .  The authors suggest that the development 
and application of information technology engender the need for a "revolutionary" change, to 
focus on problem-solving skills and "learning how to learn" through structuring core mathemat
ics around "modeling and inquiry" -in other words, around process rather than content. The 
first part of the volume surveys the history of core mathematics, makes the case for inquiry and 
modeling, and suggests an integrated curriculum for the first year. The first semester would be
gin with graph-theoretic models, proceed through probabilistic models and matrices (i ncluding 
eigenvalues and eigenvectors) ,  concentrate on discrete dynamical systems, and conclude with an 
introduction to continuous change. The second semester would introduce differential equations 
as antiderivative problems, consider Euler's  method and numerical integration, and concentrate 
on differential equations.  The bulk of the volume consists of diverse essays by workshop par
ticipants; and an appendix contains three of COMAP's Interdisciplinary Lively Applications 
Projects (!LAPs),  which are problem-solving projects for teams of students . The perspective of 
this book and its proposed reorientation of mathematics for science-oriented students has much 
to recommend it. However, not all students who study calculus are science-inclined or even 
science-interested; and faculty who like to teach mathematics from a theorem-proof viewpoint 
or as an intellectual endeavor in historical context would feel left out in the proposed curricu
lum. Unfortunately, the theme of interdisciplinarity might hit a roadblock with both students 
and mathematics faculty who are interested in mathematics for its own sake : They may have no 
interest in (nor any experience with) models in statics, electrical circuits, and fluid dynamics. 
In fact, older faculty members may remember that many of the applications in one edition of 
a calculus book by Finney and Thomas were cut out of the next because of exactly that kind 
of resistance (plus-crucially-lack of knowledge about applications on the part of teaching 
assistants ! ) .  Finally, some of the pedagogical recommendations, such as "assign new material 
for students to prepare before it is discussed in class," would likely meet strong resistance from 
students in all areas. 

Sossinsky, Alexei ,  Knots: Mathematics with a Twist, Harvard University Press, 2002; xix + 
1 26 pp, $24.95 . ISBN 0-674-00944-4. 

This gem of a book organizes an exposition of knot theory into chapters that each start with 
a simple original idea and explore its implications . The order is largely chronological, and 
technical details  are minimized, though this book demands more of the reader than the Wilson 
book on the four-color problem (see below) . Unlike that book, the endnotes here are not keyed 
to the references and-my pet peeve !--there is no index. 

15 6 
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Wilson, Robin, Four Colors Suffice: How the Map Problem Was Solved, Princeton University 
Press, 2002; xiv + 262 pp, $24.95 . ISBN 0-69 1-1 1 533-8 . 

"The publication of this book coincides with the 150th anniversary of the four-colour problem, 
and the 25th anniversary of the publication of its proof." Author Wilson provides a delight
ful and well-organized history of the four-color problem and its solution by Haken and Appel, 
requiring no mathematical background and clothed in a beautifully laid-out book. The philo
sophical objections to a computer-assisted proof may have died down in the past 25 years . 
However, Wilson relates that investigators who tried in the 1 990s to check the Haken-Appel 
proof gave up and instead created a new and simpler proof of their own, along the lines of the 
original proof. (Curiously, the only color in this book is on the map on the dust cover; all the 
book's illustrations are in halftone.) 

Krantz, Steven G. , Mathematical Apocrypha: Stories and Anecdotes of Mathematicians and the 
Mathematical, MAA, 2002; xiii + 2 1 4  pp (P), $32.95 ($25 .95 for members) . ISBN 0-883 85-
539-9. 

You will vastly enjoy dipping into this collection of stories about mathematicians, even though 
some may not be verifiable (or even true) . Despite author Krantz's  assertion that he has avoided 
stories that are "mean-spirited or critical or that depict people in a bad light," an entire section 
is devoted to "mathematical foolishness" and in some cases names are omitted to protect the 
individuals involved from embarrassment. Oh, well, enjoy yourself nevertheless-just be sure 
to keep it all in the family. 

dePillis, John, 777 Mathematical Conversation Starters, MAA, 2002; xvi + 344 pp, $37 .95 (P) 
($29.95 to members) . ISBN 0-88385-540-2. 

Beginning a conversation by mentioning that you are a mathematician is usually a non-starter, 
you are probably too honest to lie and say instead that you are a tennis coach, and the anecdotes 
of Mathematical Apocrypha (see above) are mostly "in" jokes meaningful only to mathemati
cians . So, to enhance your social life beyond a small circle of mathematician friends, you need 
"conversation starters" that are appropriate for interaction with the vast majority of people, who 
do not recognize the name of any mathematician since Euclid. Here may be the answer to your 
prayers: a cartoon-illustrated collection of thought-provoking quotations and brief discussions, 
arranged alphabetically by topic. Many are familiar, but some will be new to you. Sample, 
by Stanley Osher, UCLA: "I write the algorithms that make the computer sing . I'm the Barry 
Manilow of mathematics ." 

Hayes, Brian, Science on the far side, American Scientist (November-December 2002) 499-
502; Science on the farther shore, http : I /vrww . americans cient i st . org/ I s sues/Coms ci02/ 
02- 1 1Haye s . html . 

The priority for invention of the method of least-squares goes to Gauss, who used it to help 
re-find the asteroid Ceres in 1 80 1 . His diary records his earlier discovery of the method, which 
he said he had used since 1 795 . He published only in 1 809, four years after Legendre had 
published it as an orbit-finding technique (without justification or mention of probability) . Leg
endre: "There is no discovery that one cannot claim for oneself by saying that one had found the 
same thing some years previously." At about the same time as Gauss, "a citizen of a developing 
country" far away, the Irish-born American Robert Adrain ( 1 775-1 843), published an account 
of least-squares and of the normal distribution, in connection with a surveying problem. Adrain 
published in an American journal that died shortly thereafter-did any copies ever reach Eng
land, much less the Continent? Adrain acquired Legendre's  1 805 book, but we do not know 
whether before or after writing his paper. Author Hayes speculates on the chance of a movie 
about Adrain (theme: backwoods bumpkin beats out whining wig-wearers) ,  notes the difference 
that today ' s  technology makes for scientists far from the centers of science, and makes the im
portant observation that "It takes more than a village to raise a scientist. It takes a village full of 
scientists ." [Adrain 's paper was reprinted in Stephen M. Stigler (ed.),  American Contributions 
to Mathematical Statistics in the Nineteenth Ceniury; New York: Arno Press, 1 980.] 
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31st United States of America Mathematical Olympiad 

May 3 and May 4, 2002 

edited by Titu Andreescu and Zuming Feng 

Problems 

1 .  Let S be a set with 2002 elements, and let N be an integer with 0 _:::; N _:::; 22002 . 
Prove that it is possible to color every subset of S either blue or red so that the 
following conditions hold: 

(a) the union of any two red subsets is red; 

(b) the union of any two blue subsets is blue; 

(c) there are exactly N red subsets . 

2. Let ABC be a triangle such that 

where s and r denote its semiperimeter and its inradius, respectively. Prove that 
triangle ABC is similar to a triangle T whose side lengths are all positive integers 
with no common divisor and determine these integers . 

3 .  Prove that any monic polynomial (a polynomial with leading coefficient 1 )  of de
gree n with real coefficients is the average of two monic polynomials of degree n 
with n real roots .  

4. Let lR be the set of  real numbers . Determine all functions f : lR --+  lR such that 

f (x2 - /) = xf(x) - yf(y) 

for all pairs of real numbers x and y .  
5 .  Let a ,  b be  integers greater than 2 .  Prove that there exists a positive integer k and 

a finite sequence n 1 ,  n2 , • • •  , nk of positive integers such that n 1  = a , nk = b, and 
n;n ;+ 1  is divisible by n; + ni+ 1  for each i ( 1  _:::; i < k) . 

6. I have an n x n sheet of stamps, from which I 've been asked to tear out blocks of 
three adjacent stamps in a single row or column. (I can only tear along the per
forations separating adjacent stamps, and each block must come out of a sheet in 
one piece.) Let b (n) be the smallest number of blocks I can tear out and make it 
impossible to tear out any more blocks . Prove that there are constants c and d such 
that 

for all n > 0. 

15 8 

1 2 1 2 -n - en < b (n) < -n + dn 
7 - - 5 
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Solutions 

Note: For interested readers, the editors recommend the USA and International Math
ematical Olympiads 2002 . There many Olympiad problems are presented, together 
with a collection of remarkable solutions developed by the examination committees, 
contestants, and experts, during or after the contests. 

1. If N = 0, we color every subset blue; if N = 22002 , we color every subset red.  
Now suppose neither of these holds. We may assume that S = {0, 1 , 2 , . . .  , 200 1 } .  
Write N in binary representation: N = 2a1 + 2a2 + · · · + 2ak , where the a; are all 
distinct; then each a; is an element of S. Color each a; red, and color all the other 
elements of S blue. Now declare each nonempty subset of S to be the color of its 
largest element, and color the empty subset blue. If T, U are any two nonempty 
subsets of S, then the largest element of T U U equals the largest element of T or 
the largest element of U, and if T is empty, then T U U = U. It readily follows that 
(a) and (b) are satisfied. To verify (c) , notice that, for each i ,  there are 2a; subsets of 
S whose largest element is a; (obtained by taking a; in combination with any of the 
elements 0, I, . . .  , a; - 1 ) . If we sum over all i ,  each red subset is counted exactly 
once, and we get 2a1 + 2a2 + · · · + 2ak = N red subsets . 

2. Define a = BC, b = CA, c = AB, and u = cot Al2, v = cot B 12, w = cot C 12. 
Denote by I the incenter of triangle ABC, and let D, E, F be the points of tan
gency of the incircle with sides BC, CA , AB, respectively. Then EI = r ,  and by 
standard results about in circles, AE = s - a. So u = cot A 12 = AE I EI = s - aIr ,  
and similarly v = s - blr ,  w = s - clr .  Because 

s (s - a) +  (s - b) + (s - c) 
- = = u + v +  w ,  
r r 

we can rewrite the given relation as 49[u2 + 4v2 + 9w2] = 36(u + v + w )2 , which 
is the equality case of the Cauchy-Schwarz Inequality 

(62 + 32 + 22) [u2 + (2v)2 + (3w)2] � (6 · u + 3 · 2v + 2 · 3w)2 • 

After multiplying by r ,  we see that 

s - a s - b s - c 
36 9 4 

2s - b - c 2s - c - a 2s - a - b 
9 + 4 4 + 36 36 + 9 

a b c 
1 3  40 45 ' 

that is ,  triangle ABC is similar to a triangle with side lengths 1 3 ,  40, 45 . 
3. Let F(x) be the monic real polynomial of degree n .  If n = 1 ,  then F(x) = x + a  

for some real number a .  Then F(x) is the average of x + 2a and x ,  each of 
which has 1 real root. Now we assume that n > 1 .  Define the polynomial G(x) = 
(x - 2) (x - 4) · · · (x - 2(n - 1 ) ) .  The degree of G(x) is n - 1 .  Consider the poly
nomials P (x) = xn - kG (x) and Q(x) = 2F(x) - P (x) = 2F(x) - xn + kG(x) . 
We will show that for large enough k these two polynomials have n real roots.  
Since they are monic and their average is clearly F(x) ,  this will solve the problem. 

Consider the values of polynomial G(x) at n points x = 1 ,  3 ,  5 ,  . . .  , 2n - 1 .  
These values alternate in sign and have magnitude at least 1 (since at most two 
of the factors have magnitude 1 and the others have magnitude at least 2) . On the 
other hand, there is a constant c > 0 such that for 0 ::=:; x ::=:; n ,  we have l xn 1 < c 
and 1 2F (x) - xn l < c. Take k > c . Then we see that P (x) and Q(x) evaluated 
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at n points x = 1 ,  3 ,  5 ,  . . .  , 2n - 1 alternate in sign. Thus, polynomials P (x) 
and Q(x) each have at  least n - 1 real roots-one in  each interval ( 1 ,  3) , . . .  , 
(2n - 3 ,  2n - 1 ) .  However, since they are polynomials of degree n ,  they must then 
each have n real roots (as in the previous solution), as desired. 

4. Setting x = y = 0 in the given condition yields f (0) = 0. Because -x f (-x) -
yf (y) = f([-x]2 - y2) = f(x2 - y2) = xf (x) - yf (y) , we have f(-x) = 
-f(x) for x =I= 0. Hence f(x) is odd. From now on, we assume x ,  y � 0. 

Setting y = 0 in the given condition yields f (x2) = xf(x) .  Hence f(x2 - y2) = 
f(x2) - f (y2) ,  or, f(x2) = f(x2 - y2) + f(y2) .  Since for x � 0 there is a unique 
t � 0 such that t2 = x, it follows that 

f (x) = f(x - y) + f(y) ( 1 )  

Setting x = 2 t  and y = t i n  ( 1 )  gives 

f(2t) = 2f (t) . (2) 

Setting x = t + 1 and y = t in the given condition yields 

f(2t + 1) = (t + l )f (t + 1) - tf (t) . (3) 

By (2) and by setting x = 2t + 1 and y = I in ( I ) , the left-hand side of (3) becomes 

f(2t + 1) = f(2t) + f( l ) = 2f (t) + f( l ) .  (4) 

On the other hand, by setting x = t + 1 and y = 1 in ( 1 ) ,  the right-hand side of (3) 
reads (t + 1 ) / (t + 1 ) - tf (t) = (t + 1 ) [/ (t) + f( l ) ] - tf (t) , or, 

(t + 1 ) / (t + 1 ) - tf (t) = f(t) + (t + 1 ) / ( 1 ) .  (5) 

Putting (3) , (4), and (5) together leads to 2f (t) + f( l ) = f(t) + (t + l ) f ( l ) ,  
or, f (t) = tf ( l ) for t �  0 .  Recall that f(x) i s  odd; w e  conclude that f(-t) = 
- f(t) = -t/ ( 1 )  for t � 0. Hence f(x) = kx for all x ,  where k = f( l ) is a con
stant. It is not difficult to see that all such functions indeed satisfy the conditions of 
the problem. 

5. We may say two positive integers a and b are connected, denoted by a �  b, if there 
exists a positive integer k and a finite sequence n 1 , n2 , . . .  , nk of positive integers 
such that n 1 = a , nk = b, and n;n ;+ 1  is divisible by n; + ni+ l  for each i ( I .:::: i < k). 
The problem asks to prove that a � b for all a, b > 2. Note that for positive inte
ger n with n � 3, n � 2n , as the sequence n � n (n - 1 )  � n (n - l ) (n - 2) � 
n (n - 2) � 2n satisfies the conditions of the problem. For positive integer n � 4, 
n' = (n - 1 ) (n - 2) � 3, hence n' � 2n' by the above argument. It follows 
that n � n - 1 for n � 4 by n' � 2n' and by the sequences n � n (n - 1 )  � 
n (n - l ) (n - 2) � n (n - 1 ) (n - 2) (n - 3) � 2(n - I ) (n - 2) � (n - I ) (n - 2) 
� n - 1 .  Iterating this, we connect all integers larger than 2 .  

6. The upper bound requires an example of a set of n2 /5 + dn blocks whose removal 
makes it impossible to remove any further blocks . We note first that we can tile 
the plane with tiles that contain one block for every five stamps, so that no more 
blocks can be chosen. Two such tilings are shown below with one tile outlined 
in heavy lines. Assume that there are x unit squares in each tile. Then there are 
x /5 blocks in each tile . Choose a constant m such that the basic tile fits inside an 
(m + 1 )  x (m + 1 )  square. Given an n x n section of the tiling, take all tiles lying 
entirely within that section and add as many additional tiles, which lie partially 
in and partially out of that section, as possible . Let k denote the total number of 
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chosen tiles .  Hence there are kx/5 blocks contained in the k chosen tiles .  The n x n 
section is covered by all the chosen tiles, and these are all contained in a concentric 
(n + 2m) x (n + 2m) square. Then kx ::=: (n + 2m )2 , and so there are at most 

1 1 1 4m2 + 4m 
-kx < - (n + 2m)2 < -n2 + n 
5 - 5 - 5 5 

blocks total. We can classify all the above blocks into three categories (i) blocks 
lying completely in the n x n section; (ii) blocks lying partially in the section; 
(iii) blocks lying completely outside of the section. Suppose there are x1 , x2 , x3 
blocks in categories (i), (ii) ,  (iii), respectively. We do not have to worry about blocks 
in category (iii) , and we take all the blocks in category (i) . We need to deal with 
blocks in category (ii) with more care. By the conditions of the problem, we can 
not take out those blocks from the n x n section. All the blocks in category (ii) are 
on the border of the section. Hence there are at most 4n blocks in category (ii) , 
and so these blocks contain at most 8n stamps in the n x n square. We might need 
additional blocks to deal with these stamps. Each of the additional blocks must 
contain one of these stamps. Thus there are at most 8n additional blocks . Thus 
there are at most 

1 2 4m2 + 4m + 40 
X ]  + 8n :S X 1 + X2 + X3 + 8n :S Sn + 

5 
n 

blocks needed. 

The lower bound requires an argument. In fact, we'll prove the lower bound 

1 
b (n)  2: 6 (n2 - 2n) .  

Each block can be classified as "horizontal" or "vertical" in the obvious fashion. 
Given an arrangement of blocks, let H and V be the numbers of horizontal and 
vertical blocks . Without loss of generality, we may assume V ::=: H.  

We associate each unused stamp that i s  not in one of the two leftmost columns 
to the first block one encounters proceeding leftward from the stamp. Note that one 
never has to proceed leftward more than two stamps;  otherwise, there would be 
another block to remove. Each block is associated to at most two stamps in each 
row that it occupies . In particular, each horizontal block is associated to at most two 
stamps. Moreover, a vertical block cannot have an unused stamp on its immediate 
right in each of the three rows it covers ; otherwise, those three stamps would form 

(continued on page 150) 
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argu ments-show that proofs and carefu l reasoning are at the core of doing 
mathematics. In addit ion, anyone read i ng th is book wi l l  l earn that ask ing good 
questions is just as i mportant to the progress of mathematics as answering questions.  
Catalog Code: IPSI}R • 344 pp., Paperbound, 2002 • ISBN 0-88385-806- 1  
List: $34. 95 • MAA Member: $24. 95 

Mathematical Apocrypha 

� K�nu 
Mathematical Apocrypha i s  a book of stories about 

mathematicians and the mathematica l .  I t  d iffers from 
other books of its k ind i n  that it inc l udes many stories 
about contemporary mathematicians. Many of these 
stories are derived from the author's d i rect or second
hand experience, and have never before appeared i n  
pri nt. The stories are told i n  a brisk a n d  engaging style, 
and are enhanced by n umerous photographs and i l l us
trations. The theme of the book is strictly mathematica l .  
Some of the stories, however, are about people who 
adhere to mathematics but cannot strictly be cal led 
mathemati c i a ns .  I nc l uded a re stor ies about Bertra nd Russe l l ,  Alfred North 
Wh itehead, and Albert E instei n, a long with stories about mathematicians Erdos, 
Doob, Besicovitch, Atiyah, Wiener, Mary E l l en and Wa lter Rud i n, P61 ya, Ha l mos, 
Littlewood and many, many more legendary mathematicians. 
Catalog Code: APCI}R • 280 pp., Paperbound, 2002 • ISBN 0-88385-539-9 
List: $28. 95 • MM Member: $22. 95 
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